FEMoctave, Finite Element Algorithms in Octave

Andreas Stahel, Bern University of Applied Sciences

Version 2.1.5, created on 10th December 2023
Table of Contents
1 Introduction 7
2 The Problems to be Examined 9
2.1 The domain $\Omega \subset \mathbb{R}^{2}$ and its boundary $\Gamma=\partial \Omega=\Gamma_{1} \cup \Gamma_{2}$ 9
2.2 The general elliptic problem 9
2.3 The symmetric elliptic problem 10
2.4 The symmetric eigenvalue problem 10
2.5 The general parabolic problem 10
2.6 The symmetric parabolic problem 10
2.7 The hyperbolic problem 11
2.8 1D boundary value problems 11
2.9 1D initial boundary value problems of order 1 12
2.10 1D initial boundary value problems of order 2 12
2.11 1D eigenvalue value problems 12
2.12 Nonlinear 1D boundary value problems 12
2.13 Dynamic nonlinear 1D initial boundary value problems 12
2.14 Plane elasticity 12
2.14.1 Description of strain 13
2.14.2 Description of stress and Hooke's law 13
2.14.3 The plane stress problems 16
2.14.4 The plane strain problems 17
2.15 Elasticity problems for axisymmetric solids, using cylindrical coordinates 18
3 Illustrative Examples 21
3.1 Solving elliptic problems, static heat equations 21
3.1.1 A symmetric problem 21
3.1.2 Laplace equation in cylindrical coordinates 22
3.1.3 Diffusion on an L-shaped domain 23
3.1.4 A diffusion convection problem 24
3.2 Solving eigenvalue problems 24
3.3 Solving parabolic problems, dynamic heat equations 27
3.4 Solving hyperbolic problems, wave equations 28
3.5 Solving 1D steady state boundary value problems 31
3.6 Solving 1D dynamic initial boundary value problems of order 1 , a heat equation 32
3.7 Solving 1D dynamic initial boundary value problems of order 2 , a wave equation 33
3.8 Solving nonlinear 1D boundary value problems 34
3.8.1 A nonlinear 1D BVP solved by BVP1DNL () 34
3.8.2 A nonlinear 1D BVP solved by successive substitution 35
3.9 A dynamic nonlinear initial boundary value problem 37
3.10 Plane elasticity 38
3.10.1 A plane stress example 38
3.10.2 A plane strain example 40
3.10.3 A plane stress eigenvalue problem and a dynamic problem 42
3.11 An axially symmetric elasticity example 44
4 The Commands of FEMoctave 47
4.1 Commands for 2D meshes: creation and modification 47
4.1.1 Structure of a mesh 47
4.1.2 Create a uniform mesh on a rectangle: CreateMeshRect () 49
4.1.3 Using triangle: CreateMeshTriangle() and ReadMeshTriangle() 50
4.1.4 Adapting meshes and creating holes by using options of CreateMeshTriangle () 52
4.1.5 Adding constraints to a node in the mesh 55
4.1.6 Converting meshes: upgrading and downgrading 55
4.1.7 Use delaunay () to create a mesh: Delaunay2Mesh() 57
4.1.8 Deforming meshes by MeshDeform () 57
4.2 Evaluation and displaying results 58
4.2.1 Display results on meshes, FEMtrimesh(), FEMtrisurf(), and FEMtricontour() 58
4.2.2 Evaluate the gradient of a function at the nodes: FEMEvaluateGradient () 59
4.2.3 Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP () 59
4.2.4 Integrate a function over the domain: FEMIntegrate () 60
4.2.5 Evaluation at arbitrary points or along curves, integration along curves: FEMgriddata() 61
4.3 How to define functions 62
4.3.1 Functions for static problems 62
4.3.2 Functions for dynamic problems 63
4.4 Solving elliptic problems 63
4.4.1 Symmetric elliptic problems: BVP2Dsym () 63
4.4.2 General elliptic problems: BVP 2D () 64
4.5 Solving 2D eigenvalue problems: BVP2Deig () 65
4.6 Solving parabolic problems: IBVP2D () and IBVP2Dsym() 66
4.7 Solving hyperbolic problems: I2BVP2D () 67
4.8 Solving 1D steady state problems, BVP 1D () 67
4.9 Solving 1D dynamic problems of order 1, IBVP1D () 71
4.10 Solving 1D dynamic problems of order 2, I2BVP1D () 73
4.11 Solving 1D eigenvalue problems: BVP1Deig() 74
4.12 Solving nonlinear 1D boundary value problems: BVP1DNL () 75
4.13 Solving dynamic nonlinear 1D boundary value problems: IBVP 1DNL () 76
4.14 Plane elasticity problems 77
4.14.1 Solving plane stress and plane strain problems: PlaneStress(), PlaneStrain() 78
4.14.2 Eigenvalue problems, PlaneStressEig(),PlaneStrainEig() 79
4.14.3 Dynamic elasticity problems, PlaneStressDynamic(), PlaneStrainDynamic () 79
4.14.4 Evaluating plane stress and plane strain solutions 80
4.14.5 Displaying the deformed domain, ShowDeformation () 81
4.14.6 Evaluation of basic strain and stress: EvaluateStrain(), EvaluateStress() 82
4.14.7 Evaluation of stress expressions: EvaluateVonMises(), EvaluatePrincipalStress() and EvaluateTresca() 83
4.14.8 Evaluation of the energy density, EvaluateEnergyDensity() 85
4.15 Solving axisymmetric elasticity problems, AxiStress() 85
4.15.1 Evaluating axisymmetric solutions 85
4.15.2 Evaluation of strains and stress for axisymmetric problems 86
4.15.3 Evaluation of the energy density, EvaluateEnergyDensityAxi() 88
4.16 Internal commands in FEMoctave 88
4.16.1 Linear elements: FEMEquation. cc and FEMEquation.m 88
4.16.2 Quadratic elements: FEMEquationQuad.cc and FEMEquationQuad.m 89
4.16.3 Cubic elements: FEMEquationCubic.cc and FEMEquationCubic.m 89
4.16.4 Effect of right hand side for dynamic problems: FEMInterpolWeight () 89
4.16.5 Effect of the Dirichlet values: FEMInterpolBoundaryWeight () 90
4.16.6 Determine a few small eigenvalues: eigSmall() 90
4.16.7 Generating the equations for elasticity problems 91
4.17 External programs 92
5 Tools for Didactical Purposes 93
5.1 Observe the convergence of the error as $h \rightarrow 0$ 93
5.2 Some Element Stiffness Matrices 95
5.2.1 Element contributions for equilateral triangles 95
5.2.2 From FEM to a finite difference approximation 98
5.2.3 Element stiffness matrices for 1D problems 99
5.2.4 Element stiffness matrices for elasticity problems 101
5.3 Behavior of a FEM solution within triangular elements 102
5.4 Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix 105
5.5 Compare linear, quadratic and cubic elements 107
5.6 Are second order elements C 1 conforming? 108
5.7 Superconvergence for a 1D BVP 111
5.8 Stability of the time steppers, or lack thereof 113
5.9 Conditional stability of the explicit time stepper for a wave equation 115
5.10 The shear-locking effect caused by linear elements 116
5.11 Bending of an Euler beam 121
5.12 Eigenvalues and eigenmodes of a slender beam 125
5.13 Adding missing constraints 127
5.13.1 Adding a constraint for a steady state heat problem 127
5.13.2 Adding constraints for an elasticity problem 128
5.14 Missing boundary constraints and null spaces 129
6 The Mathematics of the Algorithms for 2D FEM 132
6.1 Classical solutions and weak solutions 132
6.2 A few triangular elements 134
6.3 Transformation, interpolation and Gauss integration 135
6.3.1 Transformation of coordinates and integration over a general triangle 135
6.3.2 Gauss integration on the standard triangle with 3 Gauss points 136
6.3.3 Gauss integration on the standard triangle with 7 Gauss points 137
6.4 Construction of first order elements 138
6.4.1 Linear interpolation on a triangle 139
6.4.2 Integration of $f \phi$ 140
6.4.3 Integration of $b_{0} u \phi$ 140
6.4.4 Integration of $a \nabla u \cdot \nabla \phi$ 141
6.4.5 Integration of $u \vec{b} \cdot \nabla \phi$ 142
6.4.6 Integration over boundary segments 142
6.5 Construction of second order elements 144
6.5.1 The basis functions for a second order element and quadratic interpolation 144
6.5.2 Determine values at the Gauss points and apply Gauss integration 145
6.5.3 Integration of $f \phi$ 146
6.5.4 Integration of $b_{0} u \phi$ 147
6.5.5 Transformation of the gradient to the standard triangle 147
6.5.6 Partial derivatives at the nodes 150
6.5.7 Integration of $u b \cdot \nabla \phi$ and $a \nabla u \cdot \nabla \phi$ 151
6.5.8 Integration over boundary segments 151
6.6 Construction of third order elements 153
6.6.1 The basis functions for a third order element and cubic interpolation 154
6.6.2 Determine values at the Gauss points and apply Gauss integration 155
6.6.3 Integration of $f \phi$ and $b_{0} u \phi$ 157
6.6.4 Transformation of the gradient to the standard triangle 157
6.6.5 Integration of $u \vec{b} \cdot \nabla \phi$ and $a \nabla u \cdot \nabla \phi$ 160
6.6.6 Partial derivatives at the nodes 160
6.6.7 Integration over boundary segments 16
6.6.8 From a polynomial interpolation to the Gauss integration points 163
6.7 Convergence of the approximate solutions u_{h} to the exact solution u 164
6.8 Dynamic problems 165
6.8.1 Dynamic problems of the heat equation type 165
6.8.2 Using eigenvalues for dynamic problems of the heat equation type 167
6.8.3 Dynamic problems of the wave equation type 167
6.8.4 Using eigenvalues for dynamic problems of the wave equation type 168
6.9 Inverse power iteration or eigs () to determine small eigenvalues of positive definite matrices 169
7 The Algorithms for 1D FEM 170
7.1 The problems to be examined 170
7.2 Interpolation, Gauss integration and the element stiffness matrices 171
7.3 Taking boundary conditions into account 174
7.4 Solving the BVP with a system of linear equations 176
7.5 Evaluation of the solution between nodes and evaluation of derivatives 176
7.6 The first order dynamic problem 177
7.6.1 An explicit time step 178
7.6.2 An implicit time step 178
7.6.3 A Crank-Nicolson time step 178
7.6.4 An L-stable Runge-Kutta solver, DIRK 178
7.6.5 A solver for semilinear dynamic problems 179
7.7 The second order dynamic problem 179
7.7.1 An implicit solver 180
7.7.2 An explicit solver 181
7.8 Nonlinear boundary value problems, Newton's method and partial substitution 181
8 The Algorithms for Plane Elasticity and Axially Symmetric Elasticity 183
8.1 The plane stress problem 183
8.2 The plane stress eigenvalue and dynamic problem 184
8.3 Construction of first order elements 186
8.3.1 Integration of $f_{1} \phi_{1}+f_{2} \phi_{2}$ 186
8.3.2 Integration of the terms involving derivatives of ϕ_{1} and ϕ_{2} 186
8.3.3 The boundary integral 187
8.3.4 Construct a weight matrix \mathbf{W} 187
8.4 Construction of second order elements 188
8.4.1 Integration of $f_{1} \phi_{1}+f_{2} \phi_{2}$ 188
8.4.2 Integration of the terms involving derivatives of ϕ_{1} and ϕ_{2} 188
8.4.3 The boundary integral 189
8.4.4 Construct a weight matrix W 190
8.5 Construction of third order elements 190
8.5.1 Integration of $f_{1} \phi_{1}+f_{2} \phi_{2}$ 190
8.5.2 Integration of the terms involving derivatives of ϕ_{1} and ϕ_{2} 191
8.5.3 The boundary integral 192
8.5.4 Construct a weight matrix \mathbf{W} 193
8.6 The plane strain problem 193
8.7 Elasticity for axially symmetric setups 194
8.8 Construction of first order elements 195
8.8.1 Integration of $r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right)$ 195
8.8.2 Integration of the terms involving derivatives of ϕ_{z} and ϕ_{z} 195
8.8.3 The boundary integral 197
8.9 Construction of second order elements 197
8.9.1 Integration of $r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right)$ 197
8.9.2 Integration of the terms involving derivatives of ϕ_{r} and ϕ_{z} 198
8.9.3 The boundary integral 199
8.10 Construction of third order elements 199
8.10.1 Integration of $r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right)$ 199
8.10.2 Integration of the terms involving derivatives of ϕ_{z} and ϕ_{z} 200
8.10.3 The boundary integral 200
9 Examples, Examples, Examples 201
9.1 An elliptic problem with variable coefficients 201
9.2 An animated wave 202
9.3 An elliptic problem with radial symmetry, superconvergence 203
9.4 An example with limited regularity 206
9.5 A potential flow problem 207
9.6 A potential flow problem in a circular pipe 210
9.7 A potential flow around a wing profile 213
9.8 A minimal surface problem 216
9.9 Computing a capacitance 217
9.9.1 State the problem 217
9.9.2 Create the mesh and solve the BVP 218
9.9.3 Compute the capacitance 220
9.10 Torsion of beams, Prandtl stress function 220
9.10.1 The setup with the warp function and the Prandtl stress function 220
9.10.2 On a disk with radius R 222
9.10.3 On a square 223
9.10.4 On a rectangle 224
9.11 Dynamic heat conduction problems 224
9.11.1 With a narrow section in the domain 224
9.11.2 With a section of lower thermal conductivity 227
9.11.3 Cooling of a cylinder 229
9.11.4 Heat waves 233
9.11.5 Static heat equation in a ball in \mathbb{R}^{3}, solved as a 1 D problem 234
9.11.6 Dynamic heat equation in a cylinder, solved as a 1D problem 237
9.12 Wave propagation, Kirchhoff diffraction 239
9.13 Sound waves in \mathbb{R}^{2} and \mathbb{R}^{3} 241
9.13.1 A sound wave in \mathbb{R}^{3} with cylindrical coordinates 241
9.13.2 A sound wave in \mathbb{R}^{2} 243
9.13.3 Sound waves in \mathbb{R}^{3} and \mathbb{R}^{2} as 1 D problems 244
9.14 Reflection and transmission of a wave by a change of impedance 246
9.15 The Black-Scholes equation of mathematical finance 247
9.16 Schrödinger's harmonic oscillator 250
9.17 The EIT forward problem 251
9.18 Stretching of a beam 258
9.19 How a Fata Morgana is appearing 258
9.20 Keller's nonlinear boundary value problems 260
9.20.1 Partial successive substitution 260
9.20.2 Newton's method 260
9.20.3 Using BVP1DNL () 261
9.20.4 A similar problem with multiple solutions 262
9.21 A mathematical pendulum problem 263
9.22 A BVP with multiple nonlinear contributions 264
9.23 Fisher's equation 265
9.23.1 A travelling wave solution 266
9.23.2 A dynamic solution 267
9.23.3 A dynamic solution of the radially symmetric setup 268
9.24 From Salt Lake City to Zürich, the shortest connection on a sphere 269
9.24.1 A solution based on successive substitution 270
9.24.2 A solution using BVP1DNL () 271
9.25 A 1D nonlinear bending beam problem 272
9.25.1 Solving the BVP using Newton's algorithm 273
9.25.2 Solving the BVP with the command BVP 1DNL () 274
9.25.3 Solving the BVP as final value of a dynamic problem, using IBVP 1DNL () 275
9.26 Mass transfer in a porous catalyst 276
9.27 Troesch's equation 278
9.28 Motion of a string 279
9.29 A plane stress example by Wait and Mitchel 279
9.30 A pipe under pressure 284
9.30.1 As a plane strain problem 284
9.30.2 As an axisymmetric problem 288
9.30.3 The analytical solution 289
9.31 A sphere under hydrostatic pressure 290
9.32 A crook with a weight attached 291
9.33 A wrench 295
9.34 A rotating rubber cylinder 297
9.35 A washer fastener examined as spring 299
9.35.1 The setup 299
9.35.2 Evaluate the force by integrating the normal stress 301
9.35.3 Evaluate the force by an energy argument 303
9.35.4 Comparison of linear, quadratic and cubic elements 303
9.35.5 Effect of different boundary conditions 304
9.36 A water dam 304
9.37 A tuning fork 306
9.38 Vibrations of a ring 308
9.39 Hertz contact of a rigid cylinder with an elastic half space 311
9.39.1 The model and the algorithm 311
9.39.2 Evaluation and visual results 315
9.39.3 The analytical solution based on the Hertz theory 316
9.39.4 Parameter studies for different penetration depths 318
9.40 Hertz contact of a rigid sphere with an elastic half space 320
9.41 Elastic waves in solids 325
9.41.1 A cylindrical elastic wave 325
9.41.2 A planar elastic wave in a canal 328
9.41.3 A planar wave moving around a turn 331
Bibliography 334
List of Figures 335
List of Tables 338
Index 340

There is no such thing as "the perfect notes" and improvements are always possible. I welcome feedback and constructive criticism. Please let me know if you use/like/dislike the package and its essential documentation. Please send your observations and remarks to Andreas.Stahel@gmx.com .

1 Introduction

- Goals of this project:
- Provide support material for teaching FEM. The material provided might help other instructors to explain or illustrate the methods and effects of finite element algorithms.
- Use Octave to implement first, second and third order triangular elements in 2D for scalar boundary value problems. For elasticity plane stress and plane strain problems are examined. For linear 1D boundary value problems and initial boundary value problems second order elements are used. A nonlinear solver for 1D problems is implemented. This leads to the Octave package FEMoctave.
- Provide examples on how to solve steady state and dynamic heat equations, wave equations and 2D elasticity equations. A few nonlinear 1D examples are provided too.
- The source code for all demos and examples is includes in the distribution.
- Tools provided by this project:
- Find this document on the internet at https://andreasstahel.github.io/FEMoctave/FEMdoc.pdf and the complete Octave package at https://andreasstahel.github.io/FEMoctave/FEMoctave.tgz.
- Documentation and codes are also on GitHub at https://github.com/AndreasStahel/FEMoctave and with Octave you should be able to install FEMoctave with the command pkg install -forge femoctave. If this fails try
pkg install https://github.com/AndreasStahel/FEMoctave/archive/v2.1.4.tar.gz
- I work exclusively with Unix systems, but it is possible to use the package on other systems by modifying the Makefile.
- The only external program used in FEMoctave is triangle, an excellent mesh generator by Jonathan Shewchuk. The source code of Triangle is not included. Find source code and documentation at www.cs.cmu.edu/~quake/triangle.html.
- Instructions on how to install Triangle on a Linux system are given in Section 4.17 on page 92.

This is not:

- an introduction to Octave (or MATLAB). Users are assumed to be familiar with the basics of using Octave. If this is not the case, may I use the occasion for a shameless add for my book Octave and Matlab for Engineering Applications by Springer, [Stah22].
- an introduction to FEM algorithms. For a basic (and affordable) introduction consider [TongRoss08]. The basic concept is not explained in these notes for FEMoct ave, but many details are spelled out. I used some of the presentations for a class Numerical Methods for biomedical engineers at the University of Bern. In this class the main ideas of FEM are spelled out. Find the lecture notes at andreasstahel.github.io/Notes/NumMethods.pdf.
- an introduction for engineers on when and how to use the tool finite element analysis. No attempt is made to explain the mechanical, physical or electrical background of the examples.
- an introduction to partial differential equations (PDE). The user of FEMoct ave is assumed to know which boundary and initial boundary value problems are well posed, i.e. will have a unique solution.

The structure of this document is as follows:
1 Introduction: a self reference.
2 The Problems to be Examined: for each type of problem solvable by FEMoctave one example is presented. This is a good starting point to find out what type of problems are examined in these notes.

3 Illustrative Examples: a few examples are are worked out, code and results shown. Read this section if you want to start working with FEMoctave.

4 The Commands of FEMoctave: all commands of FEMoctave are briefly explained and some documentation is provided. This is comparable to a manual.

5 Tools for Didactical Purposes: some results and illustrations that might be useful when teaching a class on the mathematical basics of FEM.

6 The Mathematics of the Algorithms: the mathematics of the 2D FEM algorithms is spelled out. Linear, quadratic and cubic elements on triangles are constructed. A matrix formulation is used wherever possible.

7 The Algorithms for 1D FEM: the mathematics for second order element of one dimensional problems are spelled out. Examined are static problems and dynamic problems of order 1 and 2, i.e. heat and wave equations.

8 Elasticity: the mathematical aspects of an FEM algorithm to solve plane stress and plane strain problems are presented. The algorithms for axially symmetric elasticity problems are explained, all leading to a matrix formulation.

9 Examples, Examples, Examples: as the title says.

2 The Problems to be Examined

This section consists of a brief list all types of problems that can be solved with this software. A list of the necessary commands is given in Table 1 on page 11. The instruction on how to use the commands are given in Section 4. Some typical examples are worked out in Section 9.

2.1 The domain $\Omega \subset \mathbb{R}^{2}$ and its boundary $\Gamma=\partial \Omega=\Gamma_{1} \cup \Gamma_{2}$

Throughout this presentation work with bounded domains $\Omega \subset \mathbb{R}^{2}$ with two disjoint sections Γ_{1} and Γ_{2} of the boundary $\Gamma=$ $\partial \Omega$.

- On the section Γ_{1} a Dirichlet boundary condition is applied, i.e. $u(x, y)=g_{1}(x, y)$ for a known function g_{1}.
- On the section Γ_{2} a Neumann or Robin boundary condition is applied, i.e. the outer normal derivative of u equals $g_{2}+g_{3} u$ for known functions g_{2} and g_{3}.

In the example shown in Figure 1 the solution satisfies $u=+3$ on the circular part Γ_{1} and $\frac{\partial}{\partial y} u=-1$ along the x-axis. The solution $u(x, y)$ solves $\Delta u=\nabla \cdot \nabla u=\operatorname{div} \operatorname{grad} u=0$ and minimizes the functional

$$
F(u)=\iint_{\Omega} \frac{1}{2}\|\nabla u\|^{2} d A-\int_{\Gamma_{2}} u d s
$$

amongst all functions u which satisfy $u(x, y)=+3$ on Γ_{1}.

Figure 1: A semi-disk as domain in \mathbb{R}^{2} and a solution of a BVP

2.2 The general elliptic problem

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with a nice boundary Γ, consisting of two disjoint sections Γ_{1} and Γ_{2}. For given functions a, b_{0}, \vec{b}, f and g_{i} we seek a solution of the second order boundary value problem (BVP)

$$
\begin{align*}
& -\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u=f \quad \text { for } \quad(x, y) \in \Omega \\
& u=g_{1} \tag{1}\\
& \text { for } \quad(x, y) \in \Gamma_{1} \text {. } \\
& \vec{n} \cdot(a \nabla u-u \vec{b})=g_{2}+g_{3} u \quad \text { for } \quad(x, y) \in \Gamma_{2}
\end{align*}
$$

It is assumed that there is a unique solution u. Consult your book on the theory of PDEs to determine whether the BVP has in fact a unique solution. Examples of this type of equation are given in Section 3.1.4.

2.3 The symmetric elliptic problem

If there is no convection contribution \vec{b} in (1) one ends up with a self-adjoint problem.

$$
\begin{array}{rlrl}
-\nabla \cdot(a \nabla u)+b_{0} u & =f & & \text { for } \\
u & (x, y) \in \Omega \tag{2}\\
u & =g_{1} & & \text { for } \\
a \frac{\partial u}{\partial n} & =g_{2}+g_{3} u & & \text { for }
\end{array} \quad(x, y) \in \Gamma_{1} . .
$$

The resulting matrix A will be symmetric and if $a>0, b_{0} \geq 0$ and $\Gamma_{1} \neq \varnothing$ or $b_{0}>0$, then the BVP has a unique solution and the resulting matrix is strictly positive definite.

Using Calculus of Variations one can show that solving (2) is equivalent to minimizing the functional F below among all functions u satisfying $u=g_{1}$ on Γ_{1}.

$$
F(u)=\iint_{\Omega} \frac{1}{2} a\langle\nabla u, \nabla u\rangle+\frac{1}{2} b_{0} u^{2}-f u d A-\int_{\Gamma_{2}} g_{2} u+\frac{1}{2} g_{3} u^{2} d s
$$

Examples of this type are given in Sections 3.1.1, 3.1.2, 3.1.3, 9.4 and 9.17.

2.4 The symmetric eigenvalue problem

For given functions a, b_{0}, f and g_{3} seek values of λ and nontrivial solutions u of the eigenvalue problem below.

$$
\begin{array}{rlrl}
-\nabla \cdot(a \nabla u)+b_{0} u & =\lambda f u & & \text { for } \\
& (x, y) \in \Omega \tag{3}\\
u & =0 & & \text { for } \\
& (x, y) \in \Gamma_{1} \\
a \frac{\partial u}{\partial n} & =g_{3} u & & \text { for }
\end{array} \quad(x, y) \in \Gamma_{2} .
$$

An example of this type is given in Section 3.2.

2.5 The general parabolic problem

If all functions depend on time t and the spacial variables x and y consider the general dynamic heat equation.

$$
\begin{align*}
\rho \frac{\partial}{\partial t} u-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u & =f & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
u & =g_{1} & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \\
\vec{n} \cdot(a \nabla u-u \vec{b}) & =g_{2}+g_{3} u & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \tag{4}\\
u & =u_{0} & & \text { on } \Omega \text { at } t=0
\end{align*}
$$

This is an Initial Boundary Value Problem (IBVP). Mathematicians call this a parabolic problem, engineers think of dynamic heat equations. Examples are shown in Sections 3.3 and 9.11.4.

2.6 The symmetric parabolic problem

Consider the symmetric situation of (4) to find the symmetric parabolic problem below.

$$
\begin{align*}
\rho \frac{\partial}{\partial t} u-\nabla \cdot(a \nabla u)+b_{0} u & =f & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
u & =g_{1} & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \\
a \frac{\partial \nabla u}{\partial n} & =g_{2}+g_{3} u & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \tag{5}\\
u & =u_{0} & & \text { on } \Omega \text { at } t=0\}
\end{align*}
$$

If $u(x, y)$ and λ are solutions of the eigenvalue problem (3) with $f=g_{1}=g_{2}=0$, then the dynamic problem (5) is solved by $e^{-\lambda t} u(x, y)$. See also Section 6.8.2.

2.7 The hyperbolic problem

Examine an IBVP of hyperbolic type, with the wave equation $\ddot{u}=\Delta u$ as the typical example.

$$
\begin{array}{rlrl}
\rho \frac{\partial^{2}}{\partial t^{2}} u+2 \alpha \frac{\partial}{\partial t} u-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u & & f & \\
u & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
& =g_{1} & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \tag{6}\\
\vec{n} \cdot(a \nabla u+u \vec{b}) & =g_{2}+g_{3} u & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \\
u & =u_{0} & & \text { on } \Omega \text { at } t=0 \\
\frac{\partial}{\partial t} u & =v_{0} & & \text { on } \Omega \text { at } t=0
\end{array}
$$

Examples are shown in Sections 3.4, 9.2 and 9.12. The effect of eigenvalues is described in Section 6.8.4.

command	type of problem	section
BVP2Dsym()	solve a symmetric elliptic BVP	4.4 .1
BVP2D()	solve a general elliptic BVP	4.4 .2
BVP2Deig()	solve a symmetric elliptic eigenvalue problem	4.5
IBVP2D()	solve a parabolic IBVP	4.6
IBVP2Dsym()	solve a symmetric parabolic IBVP	4.6
I2BVP2D()	solve a hyperbolic IBVP	4.7
BVP1D()	solve a static 1D BVP	4.8
IBVP1D()	solve a first order 1D IBVP	4.9
I2BVP1D()	solve a second order 1D IBVP	4.10
BVP1Deig()	solve a 1D eigenvalue BVP	4.11
BVP1DNL()	solve a nonlinear 1D BVP	4.12
IBVP1DNL()	solve a first order nonlinear 1D IBVP	4.13
PlaneStress()	solve a plane stress problem	4.14 .1
PlaneStrain()	solve a plane strain problem	4.14 .1
PlaneStressEig()	solve a plane stress eigenvalue problem	4.14 .2
PlaneStrainEig()	solve a plane strain eigenvalue problem	4.14 .2
PlaneStressDynamic()	solve a dynamic plane stress problem	4.14 .3
PlaneStrainDynamic()	solve a dynamic plane strain problem	4.14 .3
AxiStress()	solve an axially symmetric elasticity problem	4.15

Table 1: Commands to solve boundary value problems, initial boundary value problems and elasticity problems

2.8 1D boundary value problems

A 1D BVP (boundary value problem) is an ordinary differential equation for the independent variable $u(x)$ with x in an interval $x_{0} \leq x \leq x_{n}$ of the form

$$
\begin{equation*}
-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=d(x) f(x) \tag{7}
\end{equation*}
$$

with some boundary conditions at $x=x_{0}$ and $x=x_{n}$.

$$
\begin{align*}
u\left(x_{i}\right) & =g_{D} & & \text { Dirichlet } \\
a\left(x_{i}\right) u^{\prime}\left(x_{i}\right) & =g_{N 1}+g_{N 2} u\left(x_{i}\right) & & \text { Neumann } \tag{8}
\end{align*}
$$

The coefficient functions $a(x), b(x), c(x)$ and $d(x)$ will be evaluated at the Gauss points. The function $f(x)$ and the solution $u(x)$ are evaluated (resp. determined) at the nodes.

Find examples in Sections 3.5, 5.6, 5.7 and 9.18. In Sections 9.20, 9.23, 9.24 and 9.25 nonlinear boundary value problems are solved.

2.9 1D initial boundary value problems of order 1

The dynamic problem is of the form

$$
\begin{equation*}
w(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t) \tag{9}
\end{equation*}
$$

with the initial condition $u(x, 0)=u_{0}(x)$ and appropriate boundary conditions. These have to be independent on time t.
Find examples in Sections 3.6, 5.8, 9.11.6 and 9.15.

2.10 1D initial boundary value problems of order 2

The dynamic problem is of the form

$$
\begin{equation*}
w_{2}(x) \frac{\partial^{2}}{\partial t^{2}} u(x, t)+w_{1}(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t) \tag{10}
\end{equation*}
$$

with the initial condition $u(x, 0)=u_{0}(x)$ and appropriate boundary conditions. These have to be independent on time t.
Find examples in Sections 3.7, 5.9, 9.13.3, 9.14 and 9.28.

2.11 1D eigenvalue value problems

For given functions a, b, c, w and $g_{N 2}$ seek values of λ and nontrivial solutions u of the eigenvalue problem below.

$$
\begin{equation*}
-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=\lambda w(x) u(x) \tag{11}
\end{equation*}
$$

with appropriate boundary conditions

$$
\begin{align*}
u\left(x_{i}\right) & =0 & & \text { Dirichlet } \\
a\left(x_{i}\right) u^{\prime}\left(x_{i}\right) & =g_{N 2} u\left(x_{i}\right) & & \text { Neumann } \tag{12}
\end{align*}
$$

Find examples in Sections 3.2 and 9.16.

2.12 Nonlinear 1D boundary value problems

For given functions a, b, c and d and a function $f(x, u)$ or $f\left(x, u, u^{\prime}\right)$ search for solutions of the BVP

$$
\begin{equation*}
\left.-\left(a\left(x, u(x), u^{\prime}(x)\right)\right) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=d(x) f\left(x, u(x), u^{\prime}(x)\right) \tag{13}
\end{equation*}
$$

with linear boundary conditions, Dirichlet or Neumann. The leading coefficient a may depend on u and u^{\prime} too, i.e. $a\left(x, u(x), u^{\prime}(x)\right)$.

Find examples in Sections 3.8.1, 3.8.2, 9.19, 9.20, 9.21, 9.22, 9.23, 9.24, 9.25, 9.26 and 9.27.

2.13 Dynamic nonlinear 1D initial boundary value problems

For given functions a, b, c and d and a function $f(t, x, u)$ search for solutions $u(x, t)$ of the IBVP

$$
\begin{equation*}
w(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t, u(x, t)) \tag{14}
\end{equation*}
$$

with linear boundary conditions, Dirichlet or Neumann and a given initial condition $u(x, 0)=u_{0}(x)$.
Find examples in Sections 3.9, 9.23. and 9.25.3.

2.14 Plane elasticity

With FEMoctave plane elasticity problems can be examined, either plane stress or plane strain.

$$
\begin{aligned}
\vec{x} & \longrightarrow \vec{x}+\vec{u} \\
\binom{x}{y} & \longrightarrow \\
& \left.\longrightarrow \begin{array}{l}
x \\
y
\end{array}\right)+\binom{u_{1}(x, y)}{u_{2}(x, y)}
\end{aligned}
$$

Figure 2: Deformation of an elastic solid

2.14.1 Description of strain

The first goal is to determine the displacement function $\vec{u}=\left(u_{1}, u_{2}\right)$. It describes the displacement of arbitrary points $(x, y) \in \Omega \subset \mathbb{R}^{2}$. Based on $\vec{u}(x, y)$ the infinitesimal strain tensor is given by

$$
\left[\begin{array}{ll}
\varepsilon_{x x} & \varepsilon_{x y} \\
\varepsilon_{x y} & \varepsilon_{y y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial u_{1}}{\partial x} & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right) & \frac{\partial u_{2}}{\partial y}
\end{array}\right] .
$$

It contains the essential information of how a small section of the large solid is deformed, see Figure 3. Obviously this can

Figure 3: Definition of strain: a rectangle before and after deformation
be used in the space \mathbb{R}^{3} too, leading to the 3×3 strain matrix (or tensor of order 2)

$$
\left[\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{x y} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial u_{1}}{\partial x} & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u_{1}}{\partial z}+\frac{\partial u_{3}}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right) & \frac{\partial u_{2}}{\partial y} & \frac{1}{2}\left(\frac{\partial u_{2}}{\partial z}+\frac{\partial u_{3}}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial u_{1}}{\partial z}+\frac{\partial u_{3}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u_{2}}{\partial z}+\frac{\partial u_{3}}{\partial y}\right) & \frac{\partial u_{3}}{\partial z}
\end{array}\right]
$$

and the geometric interpretations in Table 2.

2.14.2 Description of stress and Hooke's law

The deformation of the solid will lead to normal and shearing stress, with the units forces per area. Find a graphical interpretation of the 6 strains in space \mathbb{R}^{3} in Figure 4 and a description in Table 3.

symbol	formula	interpretation
$\varepsilon_{x x}$	$\frac{\partial u_{1}}{\partial x}$	ratio of change of length divided by length in x direction
$\varepsilon_{y y}$	$\frac{\partial u_{2}}{\partial y}$	ratio of change of length divided by length in y direction
$\varepsilon_{z z}$	$\frac{\partial u_{3}}{\partial z}$	ratio of change of length divided by length in z direction
$\varepsilon_{x y}=\varepsilon_{y x}$	$\frac{1}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)$	the angle between the x and y axis is diminished by $2 \varepsilon_{x y}$
$\varepsilon_{x z}=\varepsilon_{z x}$	$\frac{1}{2}\left(\frac{\partial u_{1}}{\partial z}+\frac{\partial u_{3}}{\partial x}\right)$	the angle between the x and z axis is diminished by $2 \varepsilon_{x z}$
$\varepsilon_{y z}=\varepsilon_{z y}$	$\frac{1}{2}\left(\frac{\partial u_{2}}{\partial z}+\frac{\partial u_{3}}{\partial y}\right)$	the angle between the y and z axis is diminished by $2 \varepsilon_{y z}$

Table 2: Normal and shear strains in space

Figure 4: Components of stress in space

symbol	description
σ_{x}	normal stress at a surface orthogonal to $x=$ const
σ_{y}	normal stress at a surface orthogonal to $y=$ const
σ_{z}	normal stress at a surface orthogonal to $z=$ const tangential stress in y direction at surface orthogonal to $x=$ const $\tau_{x y}=\tau_{y x}$ $\tau_{x z}=\tau_{z x}$tangential stress in x direction at surface orthogonal to $y=$ const tangential stress in z direction at surface orthogonal to $x=$ const tangential stress in x direction at surface orthogonal to $z=$ const $\tau_{y z}=\tau_{z y}$tangential stress in z direction at surface orthogonal to $y=$ const tangential stress in y direction at surface orthogonal to $z=$ const

Table 3: Description of normal and tangential stress in space

With FEMoctave there are three types of boundary conditions to be examined:

$$
\begin{align*}
\vec{u} & =\vec{g}_{D} & & \text { on Dirichlet boundary } \Gamma_{1}, \text { i.e. prescibed displacement } \\
\text { force density } & =\vec{g}_{N} & & \text { on Neumann boundary } \Gamma_{2}, \text { i.e. prescibed force density } \tag{15}\\
\text { force density } & =\overrightarrow{0} & & \text { on free boundary } \Gamma_{3}
\end{align*}
$$

The conditions can be set for each component, find the codes in Table 6, to be used when creating meshes by CreateMeshRect () or CreateMeshTriangle().

For a linear material law the connection between stresses and strains is given by Hooke's law and uses two material parameters:

- E : the Young's modulus of elasticity
- ν : the Poisson ratio, with $0 \leq \nu \leq \frac{1}{2}$

FEMoctave is based on the general form of Hooke's law for isotropic (independent on direction) materials. It is a basic physical law ${ }^{1}$, confirmed by many measurements. The shown formulation is valid as long as all stress and strains are small. Hooke's law is the foundation of linear elasticity and any book on elasticity will show a formulation, e.g. [Prze68, §2.2] ${ }^{2}$, [Sout73, §2.7], or [Wein74, §10.1]. Hooke's law is given by

$$
\begin{align*}
& \left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z}
\end{array}\right)=\frac{1}{E}\left[\begin{array}{ccc}
1 & -\nu & -\nu \\
-\nu & 1 & -\nu \\
-\nu & -\nu & 1
\end{array}\right] \cdot\left(\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z}
\end{array}\right), \tag{16}\\
& \left(\begin{array}{l}
\varepsilon_{x y} \\
\varepsilon_{x z} \\
\varepsilon_{y z}
\end{array}\right)=\frac{1+\nu}{E}\left(\begin{array}{c}
\tau_{x y} \\
\tau_{x z} \\
\tau_{y z}
\end{array}\right)
\end{align*}
$$

or by inverting the matrix

$$
\begin{align*}
& \left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z}
\end{array}\right)=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1-\nu & \nu & \nu \\
\nu & 1-\nu & \nu \\
\nu & \nu & 1-\nu
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z}
\end{array}\right) \\
& \left(\begin{array}{c}
\tau_{x y} \\
\tau_{x z} \\
\tau_{y z}
\end{array}\right)=\frac{E}{1+\nu} \quad\left(\begin{array}{c}
\varepsilon_{x y} \\
\varepsilon_{x z} \\
\varepsilon_{y z}
\end{array}\right) \tag{17}
\end{align*}
$$

This leads to an elastic energy density of

$$
\begin{align*}
W= & \frac{1}{2}\left\langle\left(\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z}
\end{array}\right)\right\rangle+\left\langle\left(\begin{array}{c}
\tau_{x y} \\
\tau_{x z} \\
\tau_{y z}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x y} \\
\varepsilon_{x z} \\
\varepsilon_{y z}
\end{array}\right)\right\rangle \tag{18}\\
= & \frac{1}{2} \frac{E}{(1+\nu)(1-2 \nu)}\left\langle\left(\begin{array}{ccc}
1-\nu & \nu & \nu \\
\nu & 1-\nu & \nu \\
\nu & \nu & 1-\nu
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z}
\end{array}\right)\right\rangle+ \tag{19}\\
& +\frac{E}{1+\nu}\left\langle\left(\begin{array}{c}
\varepsilon_{x y} \\
\varepsilon_{x z} \\
\varepsilon_{y z}
\end{array}\right),\left(\begin{array}{c}
\varepsilon_{x y} \\
\varepsilon_{x z} \\
\varepsilon_{y z}
\end{array}\right)\right\rangle .
\end{align*}
$$

[^0]
2.14.3 The plane stress problems

For a plane stress problem it is assumed that there are no stresses in z-direction, i.e.

$$
\sigma_{z}=\tau_{x z}=\tau_{y z}=0
$$

This leads to a simpler version of Hooke's law

$$
\left(\begin{array}{c}
\sigma_{x} \tag{20}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right)=\frac{E}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 1-\nu
\end{array}\right]\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right) \quad \text { and } \begin{aligned}
& \varepsilon_{z z}=\frac{-\nu}{1-\nu}\left(\varepsilon_{x x}+\varepsilon_{y y}\right) \\
& \varepsilon_{x z}=0 \\
& \varepsilon_{y z}=0
\end{aligned}
$$

The energy density given by equation (18) simplifies to

$$
\begin{align*}
W_{\text {stress }} & =\frac{1}{2}\left\langle\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
0
\end{array}\right),\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z}
\end{array}\right)\right\rangle+\left\langle\left(\begin{array}{c}
\tau_{x y} \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
\varepsilon_{x y} \\
\varepsilon_{x z} \\
\varepsilon_{y z}
\end{array}\right)\right\rangle=\frac{1}{2}\left\langle\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
2 \tau_{x y}
\end{array}\right),\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle \\
& =\frac{E}{2\left(1-\nu^{2}\right)}\left\langle\left(\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 2(1-\nu)
\end{array}\right]\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle \\
& =\frac{E}{2\left(1-\nu^{2}\right)}\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \nu \varepsilon_{x x} \varepsilon_{y y}+2(1-\nu) \varepsilon_{x y}^{2}\right) . \tag{21}
\end{align*}
$$

Since

$$
\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \nu \varepsilon_{x x} \varepsilon_{y y}=\nu\left(\varepsilon_{x x}+\varepsilon_{y y}\right)^{2}+(1-\nu)\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}\right) \geq 0
$$

the energy density $W_{\text {stress }}$ is assured to be positive. With this the total energy of a plane stress problem can be written in the form ${ }^{3}$

$$
\begin{align*}
U(\vec{u})= & U_{\text {elast }}+U_{\text {Vol }}+U_{\text {Surf }} \tag{22}\\
= & \iint_{\Omega} \frac{1}{2} \frac{E}{\left(1-\nu^{2}\right)}\left\langle\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 2(1-\nu)
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle d A- \\
& -\iint_{\Omega} \vec{f} \cdot \vec{u} d A-\int_{\Gamma_{2}} \vec{g}_{N} \cdot \vec{u} d s .
\end{align*}
$$

Using the Bernoulli principle this energy has to be minimized. It is this minimization problem that is solved, subject to the boundary conditions (15). One can verify (e.g. [Stah08]) that the corresponding Euler-Lagrange equations ${ }^{4}$ are given by

$$
\begin{align*}
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}}{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}\right)=f_{1} \tag{23}\\
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}{\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}}\right)=f_{2}
\end{align*}
$$

If E and ν are constant, i.e. a homogeneous material, use elementary, tedious operations to find a shorter notation for the above system of PDEs.

$$
-\frac{E}{2(1+\nu)}\left(\Delta \vec{u}+\frac{1+\nu}{1-\nu} \vec{\nabla}(\vec{\nabla} \vec{u})\right)=\vec{f}
$$

[^1]The corresponding dynamic problem for $u_{1}(x, y, t)$ and $u_{2}(x, y, t)$ with external force densities f_{1} and f_{2} is given by

$$
\begin{align*}
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}}{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}\right)+f_{1}=\rho \frac{\partial^{2}}{\partial t^{2}} u_{1} \tag{24}\\
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}{\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}}\right)+f_{2}=\rho \frac{\partial^{2}}{\partial t^{2}} u_{2}
\end{align*}
$$

The eigenvalue problem

$$
\begin{align*}
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}}{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}\right)=\lambda \rho u_{1} \tag{25}\\
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}{\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}}\right)=\lambda \rho u_{2}
\end{align*}
$$

leads to harmonic solutions of the form

$$
\cos (\sqrt{\lambda} t+\delta)\binom{u_{1}(x, y)}{u_{2}(x, y)}
$$

of the dynamic problem (24) (with $\vec{f}=\overrightarrow{0}$) with frequency $\frac{\omega}{2 \pi}=\frac{\sqrt{\lambda}}{2 \pi}$.
Find examples in Sections 3.10.1, 9.29 9.30, 9.32, 9.33, 9.34, 9.35, 9.36, 9.37, 9.38, 9.39, 9.40 and 9.41 .

2.14.4 The plane strain problems

For a plane strain problem it is assumed that there are no strains in z-direction, i.e.

$$
\varepsilon_{x z}=\varepsilon_{y z}=\varepsilon_{z z}=0 .
$$

This leads to a simpler version of Hooke's law

$$
\begin{align*}
& \left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right)=\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & 1-2 \nu
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right) . \tag{26}\\
& \sigma_{z}=\frac{E \nu\left(\varepsilon_{x x}+\varepsilon_{y y}\right)}{(1+\nu)(1-2 \nu)} \quad, \quad \tau_{x z}=\tau_{y z}=0
\end{align*}
$$

Observe that

$$
\sigma_{z}=\frac{E \nu\left(\varepsilon_{x x}+\varepsilon_{y y}\right)}{(1+\nu)(1-2 \nu)}=\nu\left(\sigma_{x}+\sigma_{y}\right) .
$$

Modify the material parameters ν and E to

$$
\begin{equation*}
\nu^{\star}=\frac{\nu}{1-\nu}>\nu \quad \text { and } \quad E^{\star}=\frac{E}{1-\nu^{2}}>E . \tag{27}
\end{equation*}
$$

Then use elementary algebra to find

$$
\begin{aligned}
\nu & =\frac{\nu^{\star}}{1+\nu^{\star}}, \quad 1-\nu=1-\frac{\nu^{\star}}{1+\nu^{\star}}=\frac{1}{1+\nu^{\star}} \\
\frac{1-2 \nu}{1-\nu} & =\frac{1-2 \frac{\nu^{\star}}{1+\nu^{\star}}}{1-\frac{\nu^{\star}}{1+\nu^{\star}}}=1-\nu^{\star} \quad \text { and } \quad \frac{\nu}{1-2 \nu}=\frac{\frac{\nu^{\star}}{1+\nu^{\star}}}{1-2 \frac{\nu^{\star}}{1+\nu^{\star}}}=\frac{\nu^{\star}}{1-\nu^{\star}} \\
E & =E^{\star}\left(1-\nu^{2}\right)
\end{aligned}
$$

leading to a different notation for Hooke's law for the plane strain situation.

$$
\begin{aligned}
\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right) & =\frac{E}{1+\nu}\left[\begin{array}{ccc}
\frac{1-\nu}{1-2 \nu} & \frac{\nu}{1-2 \nu} & 0 \\
\frac{\nu}{1-2 \nu} & \frac{1-\nu}{1-2 \nu} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)=\frac{E^{\star}\left(1-\nu^{2}\right)}{1+\nu}\left[\begin{array}{ccc}
\frac{1}{1-\nu^{\star}} & \frac{\nu^{\star}}{1-\nu^{\star}} & 0 \\
\frac{\nu^{\star}}{1-\nu^{\star}} & \frac{1}{1-\nu^{\star}} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right) \\
& =\frac{E^{\star}}{\left(1-\nu^{\star}\right)\left(1+\nu^{\star}\right)}\left[\begin{array}{ccc}
1 & \nu^{\star} & 0 \\
\nu^{\star} & 1 & 0 \\
0 & 0 & 1-\nu^{\star}
\end{array}\right] \cdot\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right) .
\end{aligned}
$$

This is identical to Hooke's law (20) for the plane stress situation, but with E^{\star} and ν^{\star} instead of E and ν. The energy density is in this case given by

$$
\begin{align*}
W_{\text {strain }} & =\frac{1}{2} \frac{E}{(1+\nu)(1-2 \nu)}\left\langle\left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & 2(1-2 \nu)
\end{array}\right] \cdot\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle \\
& =\frac{E(1-\nu)}{2(1+\nu)(1-2 \nu)}\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \frac{\nu}{1-\nu} \varepsilon_{x x} \varepsilon_{y y}+2 \frac{1-2 \nu}{1-\nu} \varepsilon_{x y}^{2}\right) \\
& =\frac{1}{2} \frac{E^{\star}}{1-\left(\nu^{\star}\right)^{2}}\left\langle\left[\begin{array}{ccc}
1 & \nu^{\star} & 0 \\
\nu^{\star} & 1 & 0 \\
0 & 0 & 2\left(1-\nu^{\star}\right)
\end{array}\right] \cdot\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle \\
& =\frac{E^{\star}}{2\left(1-\left(\nu^{\star}\right)^{2}\right)}\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \nu^{\star} \varepsilon_{x x} \varepsilon_{y y}+2\left(1-\nu^{\star}\right) \varepsilon_{x y}^{2}\right) \tag{28}
\end{align*}
$$

Now the plane strain energy density has the same form as the plane stress energy density, but with modified constants.

$$
W_{\text {stress }}=\frac{E}{2\left(1-\nu^{2}\right)}\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \nu \varepsilon_{x x} \varepsilon_{y y}+2(1-\nu) \varepsilon_{x y}^{2}\right) .
$$

For a plane strain problem Bernoulli's principle is used and the corresponding total energy minimized, similar to expression (22). As a consequence the PDE (23), the dynamic equation (24) and the eigenvalue problem (25) can be adapted to the plane strain situation by using E^{\star} and ν^{\star}.

Find examples in Sections 3.10.2, 3.10.3 and 9.36.

2.15 Elasticity problems for axisymmetric solids, using cylindrical coordinates

Examine a domain $(x, r)=(r, z) \in \Omega \subset \mathbb{R}^{2}$ and revolve this domain about the z-axis to generate a volume in space \mathbb{R}^{3}. Assume that the displacements are axisymmetric, i.e.

$$
\left(\begin{array}{c}
u_{1}(x, y, z) \\
u_{2}(x, y, z) \\
u_{3}(x, y, z)
\end{array}\right)=\left(\begin{array}{c}
u_{r}(r, z) \cos \varphi \\
u_{r}(r, z) \sin \varphi \\
u_{z}(r, z)
\end{array}\right)
$$

To determine the elastic energy in this deformed solid determine ${ }^{5}$ the strains in the plane $\varphi=0$.

$$
\varepsilon_{x x}=\frac{\partial u_{1}}{\partial x}=\cos ^{2} \varphi \frac{\partial u_{r}}{\partial r}+\frac{\sin ^{2} \varphi}{r} u_{r}=\frac{\partial u_{r}}{\partial r}
$$

[^2]\[

$$
\begin{aligned}
\varepsilon_{y y} & =\frac{\partial u_{2}}{\partial y}=\sin ^{2} \varphi \frac{\partial u_{r}}{\partial r}+\frac{\cos ^{2} \varphi}{r} u_{r}=\frac{1}{r} u_{r} \\
\varepsilon_{z z} & =\frac{\partial u_{z}}{\partial z} \\
2 \varepsilon_{x y} & =\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}=\cos \varphi \sin \varphi \frac{\partial u_{r}}{\partial r}-\frac{\cos \varphi \sin \varphi}{r} u_{r}+\cos \varphi \sin \varphi \frac{\partial u_{r}}{\partial r}-\frac{\sin \varphi \cos \varphi}{r} u_{r}=0 \\
2 \varepsilon_{x z} & =\frac{\partial u_{1}}{\partial z}+\frac{\partial u_{3}}{\partial x}=\cos \varphi \frac{\partial u_{r}}{\partial z}+\cos \varphi \frac{\partial u_{z}}{\partial r}-\frac{\sin \varphi}{r} \frac{\partial u_{z}}{\partial \varphi}=\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r} \\
2 \varepsilon_{y z} & =\frac{\partial u_{2}}{\partial z}+\frac{\partial u_{3}}{\partial y}=\sin \varphi \frac{\partial u_{r}}{\partial z}+\sin \varphi \frac{\partial u_{z}}{\partial r}+\frac{\cos \varphi}{r} \frac{\partial u_{z}}{\partial \varphi}=0
\end{aligned}
$$
\]

This leads to

$$
\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z} \\
\varepsilon_{x y} \\
\varepsilon_{x z} \\
\varepsilon_{y z}
\end{array}\right)=\left(\begin{array}{c}
\frac{\partial u_{r}}{\partial r} \\
\frac{1}{r} u_{r} \\
\frac{\partial u_{z}}{\partial z} \\
0 \\
\frac{1}{2}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) \\
0
\end{array}\right)=\left(\begin{array}{c}
\varepsilon_{r r} \\
\varepsilon_{\varphi \varphi} \\
\varepsilon_{z z} \\
0 \\
\varepsilon_{r z} \\
0
\end{array}\right)
$$

Observe that the angular strain $\varepsilon_{\varphi \varphi}$ is given by the displacement $\varepsilon_{\varphi \varphi}=\frac{1}{r} u_{r}$. At nodes with $r=0$ use de l'Hôtipal's rule to conclude $\varepsilon_{\varphi \varphi}=\lim _{r \rightarrow 0} \frac{u_{r}(r, z)}{r}=\frac{\partial u_{r}(0, z)}{\partial r}=\varepsilon_{x x}(0, z)$.

The energy density (18) in the $r z$-plane at angle $\varphi=0$ is given by

$$
\begin{aligned}
W(r, z)= & \frac{1}{2}\left\langle\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z}
\end{array}\right),\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z}
\end{array}\right)\right\rangle+\left\langle\left(\begin{array}{c}
\tau_{x y} \\
\tau_{x z} \\
\tau_{y z}
\end{array}\right),\left(\begin{array}{c}
0 \\
\varepsilon_{x z} \\
0
\end{array}\right)\right\rangle \\
= & \frac{1}{2} \frac{E}{(1+\nu)(1-2 \nu)}\left\langle\left[\begin{array}{ccc}
1-\nu & \nu & \nu \\
\nu & 1-\nu & \nu \\
\nu & \nu & 1-\nu
\end{array}\right]\left(\begin{array}{c}
\varepsilon_{r r} \\
\frac{1}{r} u_{r} \\
\varepsilon_{z z}
\end{array}\right),\left(\begin{array}{c}
\varepsilon_{r r} \\
\frac{1}{r} u_{r} \\
\varepsilon_{z z}
\end{array}\right)\right\rangle+\frac{E}{1+\nu} \varepsilon_{r z}^{2} \\
= & \frac{1}{2} \frac{E}{(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\varepsilon_{r r}^{2}+\varepsilon_{z z}^{2}+\frac{1}{r^{2}} u_{r}^{2}\right)+2 \nu\left(\varepsilon_{r r} \varepsilon_{z z}+\frac{1}{r} u_{r}\left(\varepsilon_{r r}+\varepsilon_{z z}\right)\right)\right)+ \\
& +\frac{E}{1+\nu} \varepsilon_{r z}^{2} .
\end{aligned}
$$

To find the elastic energy in the deformed solid this expression can be integrated with respect to the angle φ, leading to an integral over the domain $\Omega \subset \mathbb{R}^{2}$. The contributions to the total energy by the volume and surface forces lead to similar expression, and finally to the total energy, similar to (22).

$$
\begin{align*}
U(\vec{u})= & U_{\text {elast }}+U_{\text {Vol }}+U_{\text {Surf }} \tag{29}\\
= & \iint_{\Omega} \frac{2 \pi r E}{2(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\varepsilon_{r r}^{2}+\varepsilon_{z z}^{2}+\frac{1}{r^{2}} u_{r}^{2}\right)+2 \nu\left(\varepsilon_{r r} \varepsilon_{z z}+\frac{1}{r} u_{r}\left(\varepsilon_{r r}+\varepsilon_{z z}\right)\right)\right) d A+ \\
& \quad+\iint_{\Omega} \frac{2 \pi r E}{1+\nu} \varepsilon_{r z}^{2} d A-\iint_{\Omega} 2 \pi r \vec{f} \cdot \vec{u} d A-\int_{\Gamma_{2}} 2 \pi r \vec{g}_{N} \cdot \vec{u} d s .
\end{align*}
$$

Some of the contributions are similar to the elastic energy for plane stress problems (21) or (22), i.e.

$$
W_{\text {stress }}=\frac{E}{2\left(1-\nu^{2}\right)}\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \nu \varepsilon_{x x} \varepsilon_{y y}+2(1-\nu) \varepsilon_{x y}^{2}\right)
$$

but there are some more contributions. The factor r will change all expressions for the element stiffness matrices, i.e. new, slightly more complex Octave codes are required.

Using the Bernoulli principle this energy has to be minimized. It is this minimization problem that is solved, subject to the boundary conditions (15).

Find examples in Sections 3.11, 9.30.2, 9.31, 9.34, 9.35 and 9.40.

3 Illustrative Examples

Solving a BVP (Boundary Value Problem) or an IBVP (Initial Boundary Value Problem) with FEM (Finite Element Method) usually involves three steps:

1. Generate the domain with the mesh to be used for the problem. With this step the type of element can be selected, i.e. linear, quadratic or cubic. The type of boundary conditions are specified.
2. Define the functions describing the problem and then apply the finite element algorithm to generate an approximate solution.
3. Visualize and analyze the obtained solution.

For all three steps FEMoctave provides tools and the following examples illustrate the procedures.

3.1 Solving elliptic problems, static heat equations

3.1.1 A symmetric problem

On a rectangle $\Omega=[0,1] \times[0,2]$ with Dirichlet boundary Γ_{1} at $x=0$ and at $y=0$ and Neumann boundary Γ_{2} at $x=1$ and at $y=2$ seek a solution of

$$
\begin{aligned}
-\Delta u & =0.25 & & \text { for } & & (x, y) \in \Omega \\
u & =0 & & \text { for } & & (x, y) \in \Gamma_{1} \\
\frac{\partial u}{\partial n} & =0 & & \text { for } & & (x, y) \in \Gamma_{2}
\end{aligned} .
$$

The solution is computed and displayed with the help of three commands.

- Divide the x and y axis in subintervalls of length 0.1 and generate the resulting rectangular mesh using CreateMeshRect (). Use the options $\ldots,-1,-2,-1,-2)$ to indicate the boundary conditions at the four edges in order lower, upper, left and right. In this example use the order Dirichlet, Neumann, Dirichlet, Neumann.
- Use BVP2Dsym () with constant coefficients to generate and solve the system of linear equation by the FEM.
- Use FEMtrimesh () to display the solution.

Figure 5: Solution of $-\Delta u=0.25$ on a rectangle

LaplaceRectangle.m

```
    FEMmesh = CreateMeshRect([0:0.1:1],[0:0.1:2],-1,-2,-1,-2);
    %%FEMmesh = MeshUpgrade(FEMmesh,'quadratic'); %% uncomment to use quadratic elements
    %%FEMmesh = MeshUpgrade(FEMmesh,'cubic'); %% uncomment to use cubic elements
    u = BVP2Dsym(FEMmesh,1,0,0.25,0,0,0);
    figure(1); FEMtrimesh(FEMmesh,u); xlabel('x'); ylabel('y');
```

Find the result in Figure 5. The above code is using linear elements. To use quadratic or cubic elements uncomment one of the lines with MeshUpgrade ().

3.1.2 Laplace equation in cylindrical coordinates

The Laplace operator in cylindrical coordinates is given by

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}} .
$$

Assuming that the solution is independent on the angle θ, then the Laplace equation $-\Delta u(\rho, z)+b_{0}(\rho, z)=f(\rho, z)$ is given by

$$
-\frac{\partial}{\partial \rho}\left(\rho \frac{\partial u}{\partial \rho}\right)-\frac{\partial}{\partial z}\left(\rho \frac{\partial u}{\partial z}\right)+\rho b_{0}(\rho, z)=\rho f(\rho, z) .
$$

Thus it is in the form of equation (2), with $x=\rho$ and $y=z$. As an example consider $b_{0}(\rho, z)=10$ and $f(\rho, z)=2 z$. The domain Ω to be examined is given by $0 \leq \rho \leq 2$ and $-1 \leq z \leq 2$ and the boundary conditions are

$$
\begin{aligned}
\frac{\partial u(0, z)}{\partial \rho} & =0 \quad \text { symmetry for }-1<z<2 \\
\rho \frac{\partial u(2, z)}{\partial \rho} & =-1 \quad \text { flux out of domain for }-1<z<2 \\
u(\rho,-1)=u(\rho, 2) & =0 \quad \text { given value for } 0<\rho<2 .
\end{aligned}
$$

Since the coefficient functions in (2) are not constants define these functions in Octave and then use BVP 2D sym () to solve the problem. Observe that both Neumann boundary conditions are described by the same function $g_{2}(\rho, z)=\frac{-\rho}{2}$, since $g_{2}(0, z)=0$ and $g_{2}(2, z)=-1$. The code is shown below and find the result in Figure 6.

Figure 6: Solution of the Laplace equation in cylindrical coordinates

LaplaceCylindrical.m

```
FEMmesh = CreateMeshRect(linspace(0,2,20),linspace(-1,2,30),-1,-1,-2,-2);
    %%FEMmesh = MeshUpgrade(FEMmesh,'quadratic'); %% uncomment to use quadratic elements
    function res = f(rz,dummy) res = rz(:,1)*2.*rz(:,2); endfunction
    function res = b0(rz,dummy) res = 10*rz(:,1); endfunction
    function res = a(rz,dummy) res = rz(:,1); endfunction
    function res = g2(rz) res = -1*rz(:,1)/2; endfunction
    u = BVP2Dsym(FEMmesh,'a','b0','f',0,'g2',0);
    FEMtrimesh(FEMmesh,u); xlabel('\rho'); ylabel('z');
```


3.1.3 Diffusion on an L-shaped domain

Examine a BVP on an L-shaped domain, as created in Section 4.1. The equation to be solved is

$$
\begin{array}{rlrlr}
-\Delta u & =1 & & \text { for } & (x, y) \in \Omega \\
\frac{\partial u}{\partial n} & =-2 u & & \text { for } & (x, y) \in \Gamma
\end{array}
$$

For this problem there is no Dirichlet condition and it is solved in three steps.

- Generate the L-shaped domain with the help of CreateMeshTriangle ().
- Solve the equations with BVP2Dsym ().
- Display the result with FEMtrimesh() and FEMtricontour().
- The code below uses linear elements. Uncommenting the line with MeshUpgrade () will solve the same problem using second or third order elements.

Find the code below and the result in Figure 7.

Figure 7: Solution of a diffusion problem on a L-shaped domain

```
                                    DiffusionLshape.m
    nodes = [0,0,-2;1,0,-2;1,1,-2;-1,1,-2;-1,-1,-2;0,-1,-2];
    FEMmesh = CreateMeshTriangle('Ldomain',nodes,0.02);
    FEMmesh = MeshUpgrade(FEMmesh,'cubic'); %% uncomment to use cubic elements
    u = BVP2Dsym(FEMmesh,1,0,1,0,0,-2);
    figure(1); FEMtrimesh(FEMmesh,u); xlabel('x'); ylabel('y'); view(-30,30)
    figure(2); clf; FEMtricontour(FEMmesh,u); xlabel('x'); ylabel('y');
```


3.1.4 A diffusion convection problem

Examine a steady state heat problem on the square $\Omega=[0,2] \times[0,2]$ with constant heating $(f(x, y)=+0.1)$ and a strong convection in x direction $\left(b_{x}(x, y)=10\right)$ and a weaker convection in y direction $\left(b_{y}(x, y)=5\right)$. This leads to the PDE

$$
-\Delta u+10 \frac{\partial u}{\partial x}+5 \frac{\partial u}{\partial y}=0.1
$$

The temperature on all of the boundary vanishes. This is a problem of type (1). Solve the BVP with the code below and find the resulting level curves of the temperature in Figure 8.

Figure 8: Solution of a diffusion convection problem

```
\square DiffusionConvection.m
    FEMmesh = CreateMeshRect(linspace (0,2,51),linspace (0,2,51),-1,-1,-1,-1);
    u = BVP2D(FEMmesh, 1, 0,10,5,0.1,0,0,0);
    figure(1); clf; FEMtricontour(FEMmesh,u,10);
        colorbar(); xlabel('x'); ylabel('y'); grid on
The above code uses elements of order 1. To use elements of order 2 on a similar mesh one can first generate a mesh with linear elements and then use MeshUpgrade () to generate a mesh with elements of order 2. Convert the mesh back to linear elements, but with the identical nodes, i.e. use MeshQuad2Linear () and then display.
DiffusionConvection.m
```

```
FEMmesh = CreateMeshRect(linspace (0,2,26),linspace (0, 2, 26),-1,-1, -1, -1);
```

FEMmesh = CreateMeshRect(linspace (0,2,26),linspace (0, 2, 26),-1,-1, -1, -1);
FEMmesh = MeshUpgrade(FEMmesh, 'quadratic'); %% make a mesh with elements of order 2
FEMmesh = MeshUpgrade(FEMmesh, 'quadratic'); %% make a mesh with elements of order 2
u = BVP2D(FEMmesh, 1, 0,10,5,0.1,0,0,0);
u = BVP2D(FEMmesh, 1, 0,10,5,0.1,0,0,0);
FEMmesh = MeshQuad2Linear(FEMmesh); %% convert to identical mesh with linear elements
FEMmesh = MeshQuad2Linear(FEMmesh); %% convert to identical mesh with linear elements
figure(1); clf; FEMtricontour(FEMmesh,u,10);
figure(1); clf; FEMtricontour(FEMmesh,u,10);
colorbar(); xlabel('x'); ylabel('y'); grid on

```
    colorbar(); xlabel('x'); ylabel('y'); grid on
```


3.2 Solving eigenvalue problems

As a first eigenvalue problem compute the eigenvalues and eigenfunctions of the Laplace operator on the unit disc with Dirichlet boundary conditions, i.e. determine a scalar λ and nontrivial function u such that

$$
-\Delta u=\lambda u \quad \text { on unit disc and } \quad u=0 \quad \text { on the boundary. }
$$

The goal is to compute the four smallest eigenvalues and display the fourth eigenfunction. Proceed in three steps.

- Use CreateTriangleMesh () to generate the mesh on the unit disc.
- Use BVP2Deig() with constant coefficients to generate and solve the eigensystem.
- Use FEMtrimesh () to display the fourth eigenfunction. Find the result in Figure 9.
- To use second order element, use MeshUpgrade ().

The computed eigenvalues are $\lambda_{1} \approx 5.7857, \lambda_{2}=\lambda_{3} \approx 14.6959$ and $\lambda_{4} \approx 26.4169$. These values coincide nicely with the squares of the first zeros of the Bessel functions $J_{0}(r), J_{1}(r)$ and $J_{2}(r)$, the values of the exact problem.

Figure 9: The fourth eigenfunction of $\Delta u=\lambda u$ on a disc

EigenvaluesDisc.m

```
xM = 0; yM = 0; R = 1; N = 160; alpha = linspace(0,N/(N+1)*2*pi,N)';
xy = [xM+R*cos(alpha),yM+R*sin(alpha),-ones(size(alpha))];
FEMmesh = CreateMeshTriangle('circle',xy,0.0005);
%%FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
%%%%%%% solve the eigenvalue problem, show the eigenvalues
%%[la,ve] = BVP2Deig(FEMmesh,1,0,1,0,4);
[la,ve,errorbound] = BVP2Deig(FEMmesh,1,0,1,0,4);
eigenvalues = la
errorbound
exact_values = [fsolve(@(x)besselj(0,x),2.3), fsolve(@(x)besselj(1,x), 3.8),...
    fsolve(@ (x) besselj(2,x),5)].^2
figure(1); FEMtrimesh(FEMmesh,ve(:,4)); xlabel('x'); ylabel('y');
```

The result shows the first 4 eigenvalues and their corresponding error bounds. The error bounds of 10^{-28} for the first eigenvalue is not to be taken too seriously, it just means accurate up to machine precision as eigenvalue of the global stiffness matrix. Observe that these are the eigenvalues of the FEM approximation to the boundary value problem. They are close to the eigenvalues of the continuous problem, i.e. the squares of the zeros of the Bessel functions.

```
eigenvalues = 5.7857
    14.6959
    14.6961
    26.4169
```

```
errorbound = 2.5479e-12 1.6604e-28
    2.9179e-12 7.0763e-16
    3.2020e-12 7.2782e-15
    3.5589e-12 2.3726e-28
exact_values = 5.7832 14.6820 26.3746
```

In cylindrical coordinates the Laplace operator is given by

$$
\Delta u(r, \theta)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u(r, \theta)}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial u(r, \theta)}{\partial \theta^{2}} .
$$

For purely radial solutions the eigenvalue problem on a disk of radius R leads to

$$
\begin{aligned}
-\left(r u^{\prime}(r)\right)^{\prime} & =\lambda r u(r) \quad \text { for } \quad 0<r<R \\
u^{\prime}(0) & =0 \\
u(R) & =0
\end{aligned}
$$

This equation can be solved with the help of BVP1Deig (). Find the graphical result for the first four radial eigenfunctions in Figure 10(a). The exact values are the squares of the zeros ${ }^{6}$ of the Bessel function $J_{0}(r)$. Obviously the first eigenvalue coincides with the above 2D approach. The other eigenvalues differ, since the above code takes angular dependence into account, while BVP1Deig () examines radial dependence exclusively.

```
                                    EigenvaluesDisk1D.m
    \(\mathrm{R}=1 ; \mathrm{N}=40\); interval \(=\) linspace \((0, \mathrm{R}, \mathrm{N})\) ';
    f_r = @(r)r;
    \([r, e V a l, e V e c]=\) BVP1Deig(interval,f_r, 0, 0,f_r, \([0,0], 0,4)\);
    figure(1); plot(r,eVec); xlabel('r'); ylabel('u');
        legend('1','2','3','4','location','southeast')
    eVal_FEM = eVal'
    exact_values \(=[\) fsolve (@ (x) bessel \(j(0, x), 2.3)\), fsolve (@ (x) besselj \((0, x), 5.4), \ldots\)
                        fsolve (@ (x) besselj(0,x), 9), fsolve (@ (x) besselj(0, x), 12) ] .^2
    -->
    \(\begin{array}{lllll}\text { eVal_FEM }= & 5.7832 & 30.4713 & 74.8872 & 139.0416\end{array}\)
    \(\begin{array}{lllll}\text { exact_values }= & 5.7832 & 30.4713 & 74.8866 & 139.0403\end{array}\)
```

To obtain the eigenfunctions with angular dependence use separation of variables. With function $f(r, \theta)=u(r) \sin (n \theta+$ δ) obtain

$$
\begin{aligned}
\Delta f(r, \theta) & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f(r, \theta)}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial f(r, \theta)}{\partial \theta^{2}} \\
& =\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u(r}{\partial r}\right)-n^{2} \frac{1}{r^{2}} u(r)\right) \sin (n \theta+\delta) .
\end{aligned}
$$

Thus the corresponding eigenvalue problem is

$$
\begin{aligned}
-\left(r u^{\prime}(r)\right)^{\prime}+\frac{1}{r} n^{2} u(r) & =\lambda r u(r) \quad \text { for } \quad 0<r<R \\
u^{\prime}(0) & =0 \\
u(R) & =0
\end{aligned}
$$

Find the result for $n=1$ of BVP1Deig () in Figure 10(b). The exact values are the squares of the zeros of the Bessel function $J_{n}(r)$.

[^3]

Figure 10: The first four radial eigenmodes of the Laplace operator on a disk of radius 1 , for $u(r)$ and $u(r) \sin (\theta)$

```
\ EigenvaluesDisk1D.m
    n = 1; n2_r = @(r) n^2./r;
    [r,eVal2,eVec2] = BVP1Deig(interval,f_r,0,n2_r,f_r, [0,0],0,4);
    figure(2); plot(r,eVec2); xlabel('r'); ylabel('u');
            legend('1','2','3','4','location','southeast')
    eVal2_FEM = eVal2'
    exact_values2 = [fsolve(@ (x)besselj (n, x), 4),fsolve(@ (x)besselj (n, x), 7), ...
                        fsolve(@(x)besselj(n,x),10),fsolve(@(x)besselj(n,x),13)]. `2
    -->
    eVal2_FEM = 14.682 49.219 103.500 177.523
    exact_values2 = 14.682 49.218 103.499 177.521
```


3.3 Solving parabolic problems, dynamic heat equations

As an example solve the dynamic heat equation

$$
\frac{\partial u}{\partial t}-\Delta u+10 \frac{\partial u}{\partial x}+5 \frac{\partial u}{\partial y}=0.1 \quad \text { for } \quad 0<x, y<2
$$

with zero Dirichlet boundary conditions and the initial temperature

$$
u(0, x, y)=u_{0}(x, y)=0.005 x(2-x)^{2} y(2-y) .
$$

The solution is computed at 7 equally spaced times t_{i} between 0 and 0.1 . In-between 10 steps are taken, but the solution is not returned. Find the result of the code below in Figure 11. At time 0 the maximal value is attained at $(x, y)=\left(\frac{2}{3}, 1\right)$. The convection term $+10 \frac{\partial u}{\partial x}+5 \frac{\partial u}{\partial y}$ then moves the point of maximal temperature to the upper right section of the square. For large times t the solution will converge to the steady state solution shown in Figure 8 in Section 3.1.4.

HeatDynamic.m

```
%% generate the mesh
FEMmesh = CreateMeshRect(linspace(0,2,31),linspace(0,2,31),-1,-1,-1,-1);
x = FEMmesh.nodes(:,1);y = FEMmesh.nodes(:,2);
%% setup and solve the initial boundary value problem
m=1; a=1; b0=0; bx=10; by=5; f=0.1; gD=0; gN1=0; gN2=0;
t0=0; tend=0.1 ; steps = [6,10];
u0 = zeros(length(FEMmesh.nodes),1);
```

```
u0 = 0.005* (2-x). ^2.*x.*y.* (2-y);
[u_dyn,t] = IBVP2D(FEMmesh,m,a,b0,bx,by,f,gD,gN1,gN2,u0,t0,tend,steps);
%% show the animation on screen
u_max = max(u_dyn(:));
for t_ii = 1:length(t)
    figure(2); FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
    xlabel('x'); ylabel('y'); caxis([0,u_max]); axis([0 2 0 2 0 u_max]); drawnow();
    figure(3); clf; FEMtricontour(FEMmesh.elem,x,y,u_dyn(:,t_ii),linspace(0,0.99*u_max,11))
    xlabel('x'); ylabel('y'); caxis([0,u_max]); drawnow();
    pause(1)
endfor
```


3.4 Solving hyperbolic problems, wave equations

As an example solve the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0 \quad \text { for } \quad x^{2}+y^{2}<6
$$

with zero Dirichlet boundary conditions, the initial displacement

$$
u(0, x, y)=u_{0}(x, y)=0.1 \exp \left(-(x-1)^{2}-y^{2}\right)\left(R^{2}-x^{2}-y^{2}\right) / R^{2}
$$

and zero initial velocity $v_{0}=0$. This assures compatible initial values, i.e. the boundary condition is satisfied at time $t=0$. The solution is computed at 15 equally spaced times t_{i} between 0 and 7 . In-between 30 steps are taken, but the solution is not returned. The solution is returned at 15 times, leading to Figure 12. This initial hump is traveling towards the boundary of the circle with speed 1, where it is reflected. More examples are shown in Sections 9.2 and 9.13.

```
\square WaveDynamic.m
    %% generate a circle
    alpha = linspace(0,2*pi,101)'; alpha = alpha(1:end-1); R = 6;
    xy = [R*\operatorname{cos(alpha),R*sin(alpha),-ones(size(alpha))];};\mp@code{;})
    if 1 %% linear elements
        FEMmesh = CreateMeshTriangle('Circle',xy,0.03);
    else %% quadratic elements
        FEMmesh = CreateMeshTriangle('Circle',xy,4*0.03);
    FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    endif
    x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
    v0 = zeros(size(x));
    u0 = 0.1*exp(-1*((x-1).^2+y.^2)); u0 = u0.* (R^2-x.^^2-y.^2) /R^2;
    %% setup and solve the initial boundary value problem
    m=1; d=0; a=1; b0=0; bx=0; by=0; f=0; gD=0; gN1=0; gN2=0;
    t0=0; tend=7 ; steps=[14,30];
    tic();
    [u_dyn,t] = I2BVP2D(FEMmesh,m,d,a,b0,bx,by,f,gD,gN1,gN2,u0,v0,t0,tend,steps);
    toc()
    figure(1) %% show the animation on screen
    for t_ii = 1:length(t)
        FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
        xlabel('x'); ylabel('y'); axis([-R R -R R -0.05 0.05])
        caxis([-0.05 0.05]); text(4,-2,0.04,sprintf('t=%2.1f',t(t_ii)))
        drawnow(); pause(0.3)
    endfor
    -->
    Elapsed time is 0.93231 seconds.
```


Figure 11: Solution of a dynamic heat equation

Figure 12: Solution of a wave equation

3.5 Solving 1D steady state boundary value problems

To solve the BVP

$$
\begin{aligned}
-u^{\prime \prime}(x) & =(1-x)^{2} \quad \text { for } \quad 0 \leq x \leq 3 \\
u(0) & =2 \\
u^{\prime}(3) & =-2
\end{aligned}
$$

on an interval with 19 nodes use the code in ODE1.m, leading to Figure 13(a).

- The initial grid consists on $N-1=9$ subintervals. The algorithm adds the midpoints and thus there are $2 \cdot 9+1=19$ nodes.
- The Dirichlet condition $u(0)=2$ allows to remove one equation and consequently \mathbf{A} will be a 18×18 matrix.
- Of the possible $18 \cdot 18=324$ entries in the stiffnes matrix \mathbf{A} only 68 are different from zero. The nonzero entries are in a band of width 5 around the diagonal of A, visible in Figure 13(b). This figure was generated by (temporarily) adding a command spy (A) in the code BVP1D.m.

ODE1.m

```
    N = 10; x = linspace (0,3,N);
    [xn,u] = BVP1D (x,1,0,0,1,@ (x) (1-x) .^2,2, [-2,0]);
    figure(1); plot(xn,u)
                xlabel('x'); ylabel('u')
```


(a) the solution $u(x)$

(b) the sparsity of \mathbf{A}

Figure 13: The solution for a simple 1D boundary value problem and the sparsity of the matrix \mathbf{A}

The constant and uniform heating of a ball of radius R can be described by a boundary value problem. The constant f indicates how much thermal energy is added to the ball per volume and time.

$$
\begin{aligned}
-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial u(r)}{\partial r}\right) & =r^{2} f \quad \text { for } \quad 0 \leq r \leq R \\
\frac{\partial}{\partial r} u(0) & =0 \\
u(R) & =0
\end{aligned}
$$

This BVP determines the steady state solution. The code below and the resulting Figure 14(a) confirms that the maximal temperature is attained at the center of the ball.

Figure 14: The solution of a steady state heat problem and the heat flux across spheres of radius r

```
HeatBall1D.m
    R = 5; f = 3; N = 10; r = linspace(0,R,N);
    [r,u] = BVP1D(r,@(r)r.^2,0,0,@(r)r.^2,f,[0,0],0);
    figure(1); plot(r,u); xlabel('radius r'); ylabel('temperature u')
```

The thermal energy generated inside the radius r is given by $f \frac{4 \pi}{3} r^{3}$ and should be equal to the flux through the sphere with radius r, i.e. $4 \pi r^{2} \frac{\partial u(r)}{\partial r}$. The code below and the resulting Figure 14(b) confirms this observation.

```
\squareHeatBall1D.m
    r_fine = linspace(0,R,1001);
    [u_fine,du_fine] = pwquadinterp(r,u,r_fine);
    figure(2); plot(r_fine,f*4/3*pi*r_fine.^3,r_fine,-4*pi*r_fine.^2.*du_fine)
        xlabel('radius r'); ylabel('thermal energy')
        legend('energy generated','energy flux','location','northwest')
```


3.6 Solving 1D dynamic initial boundary value problems of order 1, a heat equation

The initial boundary value problem describing the dynamics of heating a ball with radius R and initial temperature $u(r, 0)=$ $u_{0}(r)=0$ is given by

$$
\begin{aligned}
r^{2} \frac{\partial}{\partial t} u(x, t)-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{d r} u(r, t)\right) & =r^{2} f(r, t) & & \text { for } 0<r<R \text { and } t>0 \\
\frac{\partial}{\partial r} u(0, t) & =0 & & \text { for } t>0 \\
u(R, t) & =0 & & \text { for } t>0 \\
u(r, 0) & =0 & & \text { for } 0<r<R
\end{aligned}
$$

This assumes that the temperature $u(r, t)$ depends on time t and radius r only and the temperature on the boundary $r=R$ is kept at 0 . Find the graphical output of the code below in Figures 15 and 16.

HeatingBallRadial.m

```
R = 3; BCleft = [0,0]; BCright = 0; f = 1;
u0 = 0; t0 = 0; t_end = 3;
steps = [10,10]; interval = linspace(0,R,11);
r_square = @(r) r.^2;
[r,u,t] = IBVP1D(interval,r_square,r_square, 0,0,r_square,f,BCleft,BCright, ...
    u0,t0,t_end,steps);
```

```
figure(1); plot(r,u(:,end))
    xlabel('radius r'); ylabel('temperature u at t=t_{end}')
figure(2); plot(t,u(1,:))
    xlabel('time t'); ylabel('temperature u at r=R')
figure(3); mesh(t,r,u)
    xlabel('time t'); ylabel('radius r'); zlabel('temperature u')
figure(4); contour(t,r,u,[0.25:0.25:1.5])
    xlabel('time t'); ylabel('radius r');
```


Figure 15: The solution of dynamic heating of a ball, u as function of r or t

Figure 16: The solution of dynamic heating of a ball, u as function of r and t. The contours are at levels $u=0.25,0.50$, $0.75,1.00$ and 1.25.

3.7 Solving 1D dynamic initial boundary value problems of order 2, a wave equation

The initial boundary value problem describing the dynamics of a vibrating string with initial displacement

$$
u(x, 0)=u_{0}(x)=\left\{\begin{array}{lll}
\sin (x) & \text { for } \quad 0 \leq x \leq \pi \\
0 & \text { for } \pi \leq x \leq 3 \pi
\end{array}\right.
$$

and initial velocity

$$
\frac{\partial}{\partial t} u(x, 0)=u_{1}(x)= \begin{cases}-\cos (x) & \text { for } 0 \leq x \leq \pi \\ 0 & \text { for } \pi \leq x \leq 3 \pi\end{cases}
$$

is given by

$$
\begin{aligned}
\left.\frac{\partial^{2}}{\partial t^{2}} u(x, t)-\frac{\partial^{2}}{\partial x^{2}} u(x, t)\right) & =0 & & \text { for } 0<x<3 \pi \\
u(0, t) & =0 & & \text { and } t>0 \\
\frac{\partial}{\partial x} u(3 \pi, t) & =0 & & \text { for } t>0 \\
u(x, 0) & =u_{0}(x) & & \text { for } 0<x<3 \pi \\
\frac{\partial}{\partial t} u(x, 0) & =u_{1}(x) & & \text { for } 0<x<3 \pi
\end{aligned}
$$

Find the graphical output of the code below in Figures 17 and 18.

Wave1D.m

```
    a = 1; b = 0; c = 0; d= 1; f = 0;
    w2 = 1; w1 = 0; BCleft = 0; BCright = [0,0];
    t0 = 0; tend = 25; steps = [100,20];
    interval = linspace(0,3*pi,51)';
    u0 = @(x) sin(x).*(x<=pi); u1 = @(x) - cos(x) .*(x<=pi);
    [x,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend, steps);
    figure(1); mesh(t,x,u); xlabel('time t'); ylabel('position x'); zlabel('u')
            xlim([min(t),max(t)]); ylim([min(x),max(x)])
    figure(2); contour(t,x,u,21); xlabel('time t'); ylabel('position x');
        colorbar
```

The initial hump of the form $\sin (x)$ for $0 \leq x \leq \pi$ is moving to the right with speed $c=1$. At the border at $x=3 \pi$ the pulse is reflected, caused by the Neumann boundary condition $\frac{\partial}{\partial x} u(\beta \pi, t)=0$. Then is is moving back toward the border at $x=0$. There it is reflected again, but with the negative of the amplitude, caused by the Dirichlet boundary condition $u(0, t)=0$.

Figure 17: The amplitude of a vibrating string, u as function of x and t, the surface

3.8 Solving nonlinear 1D boundary value problems

3.8.1 A nonlinear 1D BVP solved by BVP 1DNL ()

As example consider the boundary value problem

$$
\begin{aligned}
-\frac{d^{2}}{d x^{2}} u(x) & =\frac{1}{2}+\alpha(x u(x)+\sin (u(x)) \quad \text { for }-1<x<2 \\
u(-1) & =1 \\
u(+2) & =4
\end{aligned}
$$

Figure 18: The amplitude of a vibrating string, u as function of x and t, the contour lines
with the parameter $\alpha=0.1$. The right hand side and its partial derivative are given by

$$
\begin{aligned}
f(x, u) & =\frac{1}{2}+\alpha(x u(x)+\sin (u(x))) \\
\frac{\partial}{\partial u} f(x, u) & =0+\alpha(x+\cos (u(x)))
\end{aligned}
$$

and as initial guess for the solution use $u_{0}(x)=1+x$, which satisfies the boundary conditions. This nonlinear problem is then solved by the code below in NL_Newton.m. The iteration stopped after 2 steps. The progress of the iteration is displayed and the size of the last correction applied is $\approx 1 \cdot 10^{-7}$.

```
NL_Newton.m
    interval = linspace(-1,2,40)';
    al = +0.1;
    f = {@(x,u) 0.5+al* (x.*u+sin(u)), @(x,u) +al*(x+\operatorname{cos}(u))};
    BCleft = 1; BCright = 4;
    uO = @ (x) 2+x;
    [x,u,inform] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,u0,'Display','iter');
    inform
    figure(1); plot(x,u); xlabel('x'); ylabel('u')
    -->
    iteration 1, RMS (correction) = 1.465119e-02, RMS (phi) = 1.464906e-02
    iteration 2, RMS (correction) = 1.065692e-07, RMS (phi) = 1.065692e-07
    inform = scalar structure containing the fields:
    info = 1
    iter = 2
    AbsError = 1.0657e-07
```


3.8.2 A nonlinear 1D BVP solved by successive substitution

To find the shortest connection of the form $y=u(x)$ between two points at $x=a$ and $x=b$ the length functional

$$
L(u)=\int_{a}^{b} \sqrt{1+\left(u^{\prime}(x)\right)^{2}} d x
$$

has to be minimized. The corresponding Euler-Lagrange equation is

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{1}{\sqrt{1+\left(u^{\prime}(x)\right)^{2}}} \frac{d u(x)}{d u}\right)=0 \tag{30}
\end{equation*}
$$

As example search the connection between $(x, y)=(0,1)$ and $(1,2)$, i.e. with the two boundary conditions

$$
u(0)=1 \quad \text { and } \quad u(1)=2
$$

The straight line is easily determined by BVP1DNL ().

ShortestConnection.m

```
interval = linspace(0,1,21)';
a = @(x,u,du) 1./sqrt(1+du.^2);
u0 = @ (x) 2-cos(2*pi*x);
[x,u,inform] = BVP1DNL(interval,a,0,0,1,0,1,2,u0,'Tol',1e-4);
figure(1); plot(x,u); xlabel('x'); ylabel('u')
inform
-->
inform = scalar structure containing the fields:
    info = 1
    iter = 8
    AbsError = 1.1468e-04
```

Since the coefficient

$$
a\left(x, u, u^{\prime}\right)=\frac{1}{\sqrt{1+\left(u^{\prime}\right)^{2}}}
$$

depends on u^{\prime} a successive substitution is used and it takes many iteration to converge.
As second problem search for the shortest connection with $u(0)=1$ and $a\left(u^{\prime}(1)\right) u^{\prime}(1)=\alpha$, i.e.

$$
\frac{1}{\sqrt{1+\left(u^{\prime}(1)\right)^{2}}} u^{\prime}(1)=\alpha
$$

For $\alpha=0.5$ the code below generates the result with 7 iterations. At the end of the code the values of $u(1), u^{\prime}(1)$ and the boundary condition are computed.

ShortestConnection.m

```
interval = linspace(0,1,21)';
a = @(x,u,du) 1./sqrt(1+du.^2); alpha = 0.5;
u0 = @ (x) 1+x-0.3*(1-cos(2*pi*x));
[x,u,inform] = BVP1DNL(interval,a,0,0,1,0,1,[alpha,0],u0,
    'tol',1e-6,'MaxIter',50,'tol',1e-4,'Display','iter');
figure(1); plot(x,u0(x),x,u); xlabel('x'); ylabel('u')
    legend('u_0','u','location','northwest')
inform
du = FEM1DEvaluateDu(x,u);
u_end_du_end = [u(end) du(end) du (end)*a(0,0,du (end))]
-->
iteration 1, RMS of correction = 2.424606e-01
iteration 2, RMS of correction = 3.402180e-02
iteration 3, RMS of correction = 1.014111e-02
iteration 4, RMS of correction = 2.689617e-03
iteration 5, RMS of correction = 6.834600e-04
iteration 6, RMS of correction = 1.715824e-04
iteration 7, RMS of correction = 4.294086e-05
inform = scalar structure containing the fields:
    info = 1
    iter = 7
    AbsError = 4.2941e-05
u_end_du_end = 1.5774 0.5774 0.5000
```

It is easy to see ${ }^{7}$ that for $\alpha>1$ there is no solution. The above code for $\alpha=0.9$ will converge only after 28 iterations. For $\alpha>1$ it will not converge at all!

[^4]
3.9 A dynamic nonlinear initial boundary value problem

As a first (academic) example of (14) examine a nonlinear dynamic heat equation.

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, t)-\frac{1}{10} \frac{\partial^{2}}{\partial x^{2}} u(x, t) & =x^{3}+\sin (u(x, t)) & & \text { for } 0 \leq x \leq 1 \text { and } t \geq 0 \\
u(0, t)=u(1, t) & =0 & & \text { for } t \geq 0 \\
u(x, 0) & =0 & & \text { for } 0 \leq x \leq 1
\end{aligned}
$$

With the functions

$$
f(x, t, u)=x^{3}+\sin (u) \quad \text { use } \quad \frac{\partial}{\partial u} f(x, t, u)=\cos (u)
$$

the code HeatDynamic.m below leads to Figure 19.

- The solution starts out at $t=0$ with $u(x, 0)=0$ and then is moving up, caused by the heating terms $x^{3}+\sin (u)$.
- For large times t the solution $u(x, t)$ converges to the solution of the static problem

$$
-\frac{1}{10} \frac{\partial^{2}}{\partial x^{2}} u(x)=x^{3}+\sin (u(x))
$$

with zero Dirichlet boundary conditions. This can be verified by using the command BVP1DNL (), as done in the code below but the figure is not shown in these notes.

Figure 19: The solutions and its contours for a nonlinear dynamic heat problem

```
\ HeatNonlinear.m
    L = 1; N = 41; Interval = linspace(0,L,N)';
    w = 1; a = 0.1 ; b = 0; c = 0; d = 1;
    f = {@(x,t,u)x.^3 + sin(u),@(x,t,u)\operatorname{cos}(u)};
    t0 = 0; tend = 10; steps = [30,50];
    BCleft = 0; BCright = 0; u0 = 0;
    [x,u_all,t] = IBVP1DNL(Interval,w,a,b, c,d,f,BCleft,BCright,u0,t0,tend,steps);
    figure(1); mesh(t,x,u_all); xlabel('t'); xlim([t0,tend])
        ylabel('x'); zlabel('u'); view([30,30])
    figure(2); contour(t,x,u_all); xlabel('t'); ylabel('x');
    [x,u] = BVP1DNL(Interval,a,b,c,d,{@(x,u)x.^3+sin(u),@(x,u) cos(u)},BCleft,BCright,u0);
    figure(3); plot(x,u,x,u_all(:,end)); xlabel('x'); ylabel('u');
        legend('static','dynamic', 'location','south')
```


3.10 Plane elasticity

In this section a typical plane stress situation is examined and the related commands illustrated. This is followed by a similar plane strain situation.

3.10.1 A plane stress example

On a trapezoidal domain visible in Figure 20(a) a plane stress problem is set up.

- The material parameters E and ν describe copper.
- At the lower edge at $y=0$ the displacements are zero, i.e. $u_{1}(x, 0)=u_{2}(x, 0)=0$ for $-0.05 \leq x \leq+0.05$.
- The other edges are force free.
- On all of the domain a force density of $\vec{f}=\left(0, \frac{100}{0.3 \cdot 0.1}\right) \approx(0,3333)$ is given. Thus the solid is pushed in y direction.
- An initial mesh is generated with the help of triangle and then upgraded to a mesh with second order elements.

With a call of PlaneStress () the displacements \vec{u}_{1} and \vec{u}_{2} are computed and then displayed, leading to Figure 20 .

Figure 20: The computational domain and the two displacement functions u_{1} and u_{2}

```
N = 0.1; H = 0.3; Load = 100; E=110e9; nu =0.35; %%
    W = 0.1; H = 0.3; Load = 100; E = 110e9; nu = 0.35; %% copper
    FEMmesh = CreateMeshTriangle('Example1',...
                [-W/2 0, -11; +W/2 0 -22; W/4 H -22; -W/4 H -22],0.0001);
    figure(1); FEMtrimesh(FEMmesh)
        xlabel('x'); ylabel('y'); axis equal
    FEMmesh = MeshUpgrade(FEMmesh,'quadratic'); %% uncomment for second order elements
    f = {0,Load/(H*W)}; gD = {0,0}; gN = {0,0};
    [u1,u2] = PlaneStress(FEMmesh, E, nu,f,gD,gN) ;
    figure(2); FEMtrimesh(FEMmesh,u1)
        xlabel('x'); ylabel('y'); zlabel('u_1'); view([50,30])
    figure(3); FEMtrimesh(FEMmesh,u2)
        xlabel('x'); ylabel('y'); zlabel('u_2'); view([50,30])
```

With EvaluateStrain() the three strains $\varepsilon_{x x}, \varepsilon_{y y}$ and $\varepsilon_{x y}$ are determined at the nodes and displayed, leading to Figure 21. The Saint-Venant's principle at the lower edge $y=0$ is clearly visible.

PlaneStressExample.m

```
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
figure(4);
subplot(1,3,1); FEMtrimesh(FEMmesh,eps_xx)
        xlabel('x'); ylabel('y'); zlabel('\epsilon_{xx}'); view([50,30])
subplot(1,3,2); FEMtrimesh(FEMmesh,eps_yy)
```


Figure 21: The normal strains $\varepsilon_{x x}, \varepsilon_{y y}$ and the shearing strain $\varepsilon_{x y}$

```
    xlabel('x'); ylabel('y'); zlabel('\epsilon_{yy}'); view([50,30])
    subplot(1,3,3); FEMtrimesh(FEMmesh,eps_xy)
    xlabel('x'); ylabel('y'); zlabel('\epsilon_{xy}'); view([50,30])
```

With EvaluateStress () the three stresses σ_{x}, σ_{y} and $\tau_{x y}$ are determined at the nodes and displayed, leading to Figure 22. The Saint-Venant's principle at the lower edge $y=0$ is again clearly visible.

Figure 22: The normal stresses σ_{x} and σ_{y} and the shearing stress $\tau_{x y}$

```
\square_PlaneStressExample.m
    [sigma_x,sigma_y,tau_xy] = EvaluateStress(FEMmesh,u1,u2,E,nu);
    figure(5);
    subplot(1,3,1); FEMtrimesh(FEMmesh,sigma_x)
        xlabel('x'); ylabel('y'); zlabel('\sigma_x'); view([50,30])
    subplot(1,3,2); FEMtrimesh(FEMmesh,sigma_y)
    xlabel('x'); ylabel('y'); zlabel('\sigma_y'); view([50,30])
    subplot(1,3,3); FEMtrimesh(FEMmesh,tau_xy)
        xlabel('x'); ylabel('y'); zlabel('\tau_{xy}'); view([50,30])
```

With the two commands EvaluateVonMises() and EvaluateTresca() the von Mises stress and the Tresca stress are computed and displayed, leading to Figure 23. At the end of the code the two principal stresses σ_{1} and σ_{2} are computed, but not displayed.

```
PlaneStressExample.m
```

vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy);
figure(6); FEMtrimesh(FEMmesh,vonMises)

Figure 23: The von Mises and Tresca stress

```
        xlabel('x'); ylabel('y'); zlabel('von Mises stress'); view([120,30])
    Tresca = EvaluateTresca(sigma_x,sigma_y,tau_xy);
figure(7); FEMtrimesh(FEMmesh,Tresca)
            xlabel('x'); ylabel('y'); zlabel('Tresca stress'); view([120,30])
[s1,s2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);
```


3.10.2 A plane strain example

On the trapezoidal domain visible in Figure 20(a) a plane strain problem is set up.

- The material parameters E and ν describe copper.
- At the lower edge at $y=0$ the displacements are zero, i.e. $u_{1}(x, 0)=u_{2}(x, 0)=0$ for $-0.05 \leq x \leq+0.05$.
- At the upper edge at $y=0.3$ the horizontal displacements is set to +0.01 and the vertical displacement is zero.
- The edges on the side are force free.
- There is no volume force applied to the domain, i.e. $\vec{f}=\overrightarrow{0}$.
- An initial mesh is generated by deforminag a regular, rectangular mesh, and then upgraded to a mesh with second order elements.

With a call of PlaneStrain() the displacements \vec{u}_{1} and \vec{u}_{2} are computed and then displayed, leading to Figure 24. A corser mesh on the same domain is generated and then used to display the original and deformed domain. Find the result in Figure 24(a) with the original domain in green and the deformed domain in red.

PlaneStrainExample.m

```
W = 0.1; H = 0.3; E = 110e9; nu = 0.35; %% copper
    FEMmesh = CreateMeshRect (linspace(-W/2,W/2,10),linspace(0,H,30),-11,-11,-22,-22);
    function xy_new = Deform(xy)
        xy_new = [xy(:,1).*(1-0.5/0.3*xy(:,2)) , xy(:,2)];
    endfunction
    FEMmesh = MeshDeform(FEMmesh,'Deform');
    CMesh = CreateMeshRect(linspace(-W/2,W/2,6),linspace(0,H,20),-11,-11,-22,-22);
    CMesh = MeshDeform(CMesh,'Deform'); %% create a course mesh on the same domain
    FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    f = {0,0}; gN = {0, 0};
    function res = gD(xy)
        res = +(xy (:,2)>0.1)*0.01;
```


Figure 24: The computational domain and the two displacement functions u_{1} and u_{2}
endfunction

```
[u1,u2] = PlaneStrain(FEMmesh,E,nu,f,{'gD',0},gN);
u1i = FEMgriddata(FEMmesh,u1,CMesh.nodes(:,1),CMesh.nodes(:,2));
u2i = FEMgriddata(FEMmesh,u2,CMesh.nodes(:,1),CMesh.nodes(:,2));
figure(1); ShowDeformation(CMesh,u1i,u2i,2)
    axis equal; xlabel('x'); ylabel('y'); ylim([0,0.35])
figure(2); FEMtrimesh(FEMmesh,u1)
    xlabel('x'); ylabel('y'); zlabel('u_1'); view([50,30])
figure(3); FEMtrimesh(FEMmesh,u2)
    xlabel('x'); ylabel('y'); zlabel('u_2'); view([50,30])
```

With EvaluateStrain() the three strains $\varepsilon_{x x}, \varepsilon_{y y}$ and $\varepsilon_{x y}$ are determined at the nodes and displayed, leading to Figure 25.

Figure 25: The normal strains $\varepsilon_{x x}, \varepsilon_{y y}$ and the shearing strain $\varepsilon_{x y}$

```
PlaneStrainExample.m
    [eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
    figure(4);
    subplot(1,3,1); FEMtrimesh(FEMmesh,eps_xx)
    xlabel('x'); ylabel('y'); zlabel('\epsilon_{xx}'); view([50,30])
    subplot(1,3,2); FEMtrimesh(FEMmesh,eps_yy)
        xlabel('x'); ylabel('y'); zlabel('\epsilon_{yy}'); view([50,30])
    subplot(1,3,3); FEMtrimesh(FEMmesh,eps_xy)
        xlabel('x'); ylabel('y'); zlabel('\epsilon_{xy}'); view([50,30])
```

With EvaluateStress () the three stresses σ_{x}, σ_{y} and $\tau_{x y}$ are determined at the nodes and displayed, leading to Figure 26. Observe that the function EvaluateStress () is called with for four return arguments, including σ_{z}. This assures that the plane strain expressions are used for the computations.

Figure 26: The normal stresses σ_{x} and σ_{y} and the shearing stress $\tau_{x y}$

```
                        PlaneStrainExample.m
    [sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(FEMmesh,u1,u2,E,nu) ;
    figure(5); title('stress')
    subplot(1,3,1); FEMtrimesh(FEMmesh,sigma_x)
        xlabel('x'); ylabel('y'); zlabel('\sigma_x'); view([50,30])
    subplot(1,3,2); FEMtrimesh(FEMmesh,sigma_y)
            xlabel('x'); ylabel('y'); zlabel('\sigma_y'); view([50,30])
    subplot(1,3,3); FEMtrimesh(FEMmesh,tau_xy)
        xlabel('x'); ylabel('y'); zlabel('\tau_{xy}'); view([50,30])
```

With the two commands EvaluateVonMises() andEvaluateTresca() the von Mises stress and the Tresca stress are computed and displayed, leading to Figure 23. Observe that four input arguments are given for the functions EvaluateVonMises() and EvaluateTresca(), including σ_{z}. This assures that the plane strain expressions are used for the computations. At the end of the code the two unknown principal stresses σ_{1} and σ_{2} are computed, but not displayed.

PlaneStrainExample.m

```
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);
    figure(6); FEMtrimesh(FEMmesh,vonMises)
            xlabel('x'); ylabel('y'); zlabel("von Mises stress"); view([120,30])
    Tresca = EvaluateTresca(sigma_x,sigma_y,tau_xy,sigma_z);
    figure(7); FEMtrimesh(FEMmesh,Tresca)
            xlabel('x'); ylabel('y'); zlabel("Tresca stress"); view([120,30])
| [s1,s2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);
```


3.10.3 A plane stress eigenvalue problem and a dynamic problem

Examine an Aluminum beam of length $L=0.2$, height $H=0.01$ and width $W=0.01$. The beam is clamped on the left at $x=0$ and the other boundaries are free. According to the Euler beam theory ${ }^{8}$ the frequency of the first eigenmode is given by

$$
\text { freq }=\frac{z_{0}^{2} \sqrt{E I}}{2 \pi \sqrt{\rho H W} L^{2}} \approx 205.63 \mathrm{~Hz} .
$$

With FEMoct ave use the command PlaneStressEig () to determine the first eigenvalue and the corresponding eigenmode. A mesh with 80 second order elements is used. The code determines the frequency and the horizontal and vertical displacements, see Figure 28.

[^5]

Figure 27: The von Mises and Tresca stress
clear *
L = 0.20; H = 0.01; W = 0.01; rho = 2.7e3;
E = 70e9; nu = 0.33; %% Aluminum
I2 = 1/12*H^3*W;
f = @(z) 1+cos(z).*\operatorname{cosh(z); %% clamped at x=0, free at x=L}
z0 = fsolve(f,pi/2);
freqEuler = z0^2*sqrt (E*I2/ (rho*H*W))/(2*pi*L^2)
Nx = 20; Ny = 2;
Mesh = CreateMeshRect(linspace(0,L,Nx+1),linspace(0,+H,Ny+1),-22,-22,-11,-22);
Mesh = MeshUpgrade(Mesh,'quadratic');
[la,u1,u2] = PlaneStressEig(Mesh,E,nu,rho,1);
freqFEM = sqrt(la)/(2*pi)
u1 = u1/max(abs(u2))/100; u2 = u2/max(abs(u2))/100;
figure(1);FEMtrimesh(Mesh,u1); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(2);FEMtrimesh(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2')
-->
freqEuler = 205.63
freqFEM = 205.69

```

The same setup can be examined as a dynamic problem. As initial displacement use the shape of the first eigenmode and zero initial velocity. Then the command PlaneStressDynamic () can construct a solution, leading to Figure 29. The above frequency of 205.6 Hz is confirmed by the period \(\frac{1}{205.6} \approx 4.86 \mathrm{~ms}\), visible in Figure 29.

\section*{EulerBeamDynamic.m}
```

 E = 70e9; nu = 0.33; rho = 2.7e3; L = 0.2; H = 0.01;
 f = {0,0}; gD = {0,0}; gN = {0,0};
 function res = u0Func(xy)
 z = 1.8751; L = max(xy(:,1)); C = - (cos(z) +cosh(z))/(sin(z)+sinh(z));
 x = z*xy(:,1)/L;
 res = cos(x)-cosh(x) + C*(sin(x)-sinh(x));
 res = -0.1*res./max(abs(res));
 endfunction
 u0 = {0,'u0Func'}; v0 = {0,0};
 t0 = 0; tend = 0.0056; steps = [100,20];
 Mesh = CreateMeshRect(linspace(0,L, 31),linspace(-H/2,+H/2,3),-22,-22,-11,-22);
 Mesh = MeshUpgrade(Mesh,'quadratic'); solver = 'implicit';
    ```
```

 [u1_all,u2_all,t] = PlaneStressDynamic (Mesh, E, nu,rho,f,gD,gN,u0,v0,t0, ...
 tend,steps,'solver',solver);
 u1 = u1_all(:,end); u2 = u2_all(:,end);
 figure(1); FEMtrimesh(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2');
 ylim([-H/2,H/2])
 ind = find((Mesh.nodes(:,1)==L).*(Mesh.nodes(:,2)==0)); u2_t = u2_all(ind,:);
 figure(2); plot(t*1e3,u2_t); xlabel('t [ms]'); ylabel('u_2(L, 0,t)');
 xlim([0,max(t)*1e2]); ylim(0.11*[-1,+1])
    ```


Figure 28: The first eigenmode of a bending beam


Figure 29: The first eigenmode of a bending beam as dynamic problem

\subsection*{3.11 An axially symmetric elasticity example}

A rectangular domain \(0 \leq r=x \leq R=0.1\) and \(-2 R \leq z \leq 2 R\) is rotated about the \(z\)-axis and on the middle section \(-R \leq z \leq R\) of the surface an external pressure of the form
\[
p(z)= \begin{cases}P\left(R^{2}-z^{2}\right) & \text { for }|z| \leq R \\ 0 & \text { for }|z|>R\end{cases}
\]
is applied. The aim is to determine the radial displacement \(u_{r}\) and the \(z\)-displacement \(u_{z}\), as function of \(x=r\) and \(z\).
- Due to the symmetry only the upper half of the cylinder has to be examined, with the boundary condition \(u_{z}=0\) in the plane \(z=0\).
- Along the \(z\)-axis the boundary condition is \(u_{r}=0\).
- The upper edge is force free.
- Along the right edge at \(r=R\) the external pressure is applied.

As a first step create the mesh, define the pressure funcation and the matreial parameters. Then solve the problem using the function AxiStress().
```

_ AxiSymmetricExample.m
R = 0.1;
if 0 %% nonuniform mesh
Mesh = CreateMeshTriangle('AxiSymm',[0 0 -21; R 0 -32; R 2*R -22; 0 2*R -12],1e-4);
else
Mesh = CreateMeshRect(linspace(0,R,10),linspace(0, 2*R,20),-21,-22,-12,-32);
endif
Mesh = MeshUpgrade(Mesh,'quadratic');
function res = force(rz)
R = 0.1; P = 1e5; res = - P*max (R^2-rz(:,2) .^2,0);
endfunction
E = le9; nu = 0.3; f = {0,0}; gD = {0,0}; gN = {'force',0};
[ur,uz] = AxiStress (Mesh,E,nu,f,gD,gN);

```

With this solution the original and deformed mesh can be displayed, leading to the left part of Figure 30.

\section*{AxiSymmetricExample.m}
```

 factor = 0.1*R/max(sqrt(ur.^2+uz.^2));
 figure(1); ShowDeformation(Mesh,ur,uz,factor); xlabel('r'); ylabel('z'); axis equal;
    ```


Figure 30: The original and deformed domain and the von Mises stress for an axially symmetric setup

With the displacements \(u_{r}\) and \(u_{z}\) evaluate stresses by using the functions EvaluateStressAxi() and EvaluateVonMisesA

\section*{AxiSymmetricExample.m}
[sigma_x,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi (Mesh, ur,uz, E, nu) ;
figure(12); FEMtrimesh (Mesh,sigma_x)
xlabel('r'); ylabel('z'); zlabel('\sigma_x')
```

figure(13); FEMtrimesh(Mesh,sigma_y)
xlabel('r'); ylabel('z'); zlabel('\sigma_y')
figure(14); FEMtrimesh(Mesh,sigma_z)
xlabel('r'); ylabel('z'); zlabel('\sigma_z')
vonMises = EvaluateVonMises(sigma_x,sigma_y,sigma_z,tau_xz);
figure(15); FEMtrimesh(Mesh,vonMises)
xlabel('r'); ylabel('z'); zlabel('von Mises'); view(-125,30])

```


Figure 31: Stresses for an axially symmetric setup

\section*{4 The Commands of FEMoctave}

In this section find the documentation for the commands provided by FEMoctave. A considerable part of this documentation is also available by using the command help within Octave, e.g. help BVP2D .

\subsection*{4.1 Commands for 2D meshes: creation and modification}

FEMoctave provides a few commands to generate and modify meshes, see Table 4. In this section the commands are briefly explained and elementary examples provided.
\begin{tabular}{|l|l|}
\hline command & purpose \\
\hline CreateMeshRect() & create a rectangular mesh \\
CreateMeshTriangle() & create a mesh by Triangle \\
ReadMeshTriangle() & read a mesh created by Triangle \\
MeshAddConstraint() & add a constraint to one node in a mesh \\
MeshUpgrade() & transform a mesh of order 1 to order 2 or 3 \\
MeshQuad2Linear() & transform a mesh of order 2 to order 1 \\
MeshCubic2Linear() & transform a mesh of order 3 to order 1 \\
Delaunay2Mesh() & translate a Delaunay grid to a mesh \\
MeshDeform() & deform a given mesh \\
\hline
\end{tabular}

Table 4: Commands to create and modify meshes

\subsection*{4.1.1 Structure of a mesh}

The main information of a mesh, as shown in Section 6.1 is given by the position of the nodes (points), the corresponding triangles and the boundary edges. A mesh consists of
\(N n\) nodes, with their \((x, y)\) coordinates,
\(N e\) elements, with 3 (or 6, or 10) nodes forming one triangle,
Nb boundary edges, with 2 (or 3 , or 4 ) nodes forming one edge.
In FEMoctave this information is stored as a structure with an arbitrary name, but the elements of the structure require specific names, as shown in Table 5. The first 6 of these elements can be modified by the user and contain all the necessary information on the mesh to be used.
- type: a string indicating the order of the element, currently linear, quadratic or cubic. The algorithms will read this information and construct element stiffness matrices of the correct order.
- nodes: this \(N n \times 2\) matrix contains the coordinates \(\left(x_{i}, y_{i}\right)\) of the nodes numbered by \(1 \leq i \leq N n\). The entries are real numbers.
- nodest: this \(N n\) vector of integers contains the information of the type of nodes. If the entry in row \(i\) equals 0 then node \(i\) is a DOF, i.e. the value of the solution is not prescribed. If the entry in row \(i\) equals 1 then node \(i\) is a Dirichlet node and the value of the solution is determined by the given function. For elasticity problems this is a \(N n \times 2\) matrix with the information on both components.
- elem: for first order meshes this \(N e \times 3\) matrix of integers contains in each row the numbers of three nodes forming one linear element (triangle). The triangles have a positive orientation. For second order elements it is a \(N e \times 6\) matrix of integers. For third order elements it is a \(N e \times 10\) matrix of integers.
- elemT: type of elements is not used yet.
- edges: this \(N b \times 2, N b \times 3\) or \(N b \times 4\) matrix of integers contains in each row the numbers of two, three or four nodes forming a boundary edge.
- edges \(T\) : this \(N b\) vector of integers contains the information of the type of edges. If the entry in row \(i\) equals -1 then edge \(i\) is part of the Dirichlet boundary, i.e. the value of the solution is prescribed. If the entry in row \(i\) equals -2 then edge \(i\) is part of the Neumann boundary, i.e. the value of the solution is not yet known. For elasticity problems this is a \(N b \times 2\) matrix with the information on both components. See Table 6 for the codes.
\begin{tabular}{|l|c|l|}
\hline Name & Size & Information \\
\hline type & string & type of element, "linear", "quadratic" or "cubic" \\
nodes & \(N n \times 2\) & coordinates of nodes \\
nodesT & \(N n \times\{1,2\}\) & type of nodes, either 0 (free) or 1 (fixed) \\
elem & \(N e \times\{3,6,10\}\) & list of nodes that make up the triangles \\
& \(N e \times 3\) & for first order elements \\
& \(N e \times 6\) & for second order elements \\
& \(N e \times 10\) & for third order elements \\
elemT & \(N e \times 1\) & type of elements \\
edges & \(N b \times\{2,3,4\}\) & list of nodes that make up the boundary edges \\
edgesT & \(N b \times\{1,2\}\) & type of boundary edge, Dirichlet, Neumann or elasticity \\
\hline elemArea & \(N e \times 1\) & area of the triangles \\
GP & \begin{tabular}{l} 
coordinates of the Gauss integration points
\end{tabular} \\
& \(7 \cdot N e \times 2\) & for first order elements \\
GPT & \((3\) or 7\() \cdot N e \times 1\) & for second and third order elements \\
type of the Gauss integration points \\
nDOF & \(1 \times\{1,2\}\) & total number of DOF of the system \\
node2DOF & \(N n \times\{1,2\}\) & renumbering from nodes to DOF \\
\hline
\end{tabular}

Table 5: Elements of a mesh structure
All other elements of a mesh structure can be derived or computed from the above data.
- elemArea: this vector of real numbers contains the area of the individual triangles.
- GP: this matrix of reals contains the coordinates of all Gauss points for the numerical integration. There are 3 (or 7) Gauss points for each triangle.
- GPT: this vector of integer contains the type for each Gauss point. Currently not used.
- nDOF: this integer gives the total number of degrees of freedom (DOF) for the system to be solved.
- node2DOF: This vector (or matrix for elasticity problems) gives for each node the number of the corresponding DOF. If the number equals 0 then it is a Dirichlet node.

The commands CreateMeshRect () and CreateMeshTriangle() create meshes with this structure.
The codes for the boundary conditions in Table 6 for elasticity problems might ask for a few examples of boundary conditions.
-11 : at this node the displacements are given by \(u_{1}(x, y)=g D 1(x, y)\) and \(u_{2}(x, y)=g D 2(x, y)\).
-22: at this node there are no surface forces, i.e. the node is on a free section of the boundary.
-12 : at this node the \(x\)-displacement \(u_{1}(x, y)=g D 1(x, y)\) is given and there is no surface force in \(y\)-direction.
-31: at this node the \(y\)-displacement \(u_{2}(x, y)=g D 2(x, y)\) is given and surface force in \(x\)-direction is given by \(g N 1(x, y)\).
-23: at this node there is no surface force in \(x\)-direction and the surface force in \(y\)-direction is given by \(g N 2(x, y)\).
\begin{tabular}{|c|c|c|}
\hline code & \multicolumn{2}{|c|}{ for scalar problems } \\
\hline-1 & Dirichlet condition,\(u=g_{1}\) given \\
-2 & Neumann condition,\(a \frac{\partial}{\partial n} u=g_{2}+g_{2} u\) \\
\hline & for elasticity problems \\
\hline code & in \(x\)-direction & in \(y\)-direction \\
\hline\(-1^{*}\) & displacement \(u_{1}=g D_{1}\) given & \(*\) \\
\(-* 1\) & \(*\) & displacement \(u_{2}=g D_{2}\) given \\
\(-2^{*}\) & force free section & \(*\) \\
\(-* 2\) & \(*\) & force free section \\
\(-3^{*}\) & force density \(g N_{1}\) given & \(*\) \\
\(-* 3\) & \(*\) & force density \(g N_{2}\) given \\
\hline
\end{tabular}

Table 6: Codes for the boundary conditions

\subsection*{4.1.2 Create a uniform mesh on a rectangle: CreateMeshRect ()}

With the command CreateMeshRect ( \(\mathrm{x}, \mathrm{y}, \mathrm{Blow}\), Bup,Bleft, Bright) you can create a mesh on a rectangle. The function takes 6 input arguments.
- The ordered vectors x and y contain the \(x\) and \(y\) coordinates of the mesh to be generated.
- For scalar problems the variables Blow, Bup, Bleft and Bright indicate the boundary condition on the corresponding edges. If the index is -1 then the edge is part of the Dirichlet boundary \(\Gamma_{1}\) and thus the value of the function is prescribed. If the index is -2 then the edge is part of the Neumann boundary \(\Gamma_{2}\) and thus information about the outer normal derivative is known, but not the value of the solution.
- For elasticity problems the variables Blow, Bup, Bleft and Bright indicate the boundary condition according to the codes in Table 6.

Examples of the usage are given in Sections 3.1.1 and 3.1.2.

\section*{CreateMeshRect()}

Mesh \(=\) CreateMeshRect (X,Y,BLOW,BUP,BLEFT,BRIGHT)
```

Create a rectangular mesh with nodes at (x_i,y_j) with linear elements

```
parameters:
    * \(\mathrm{X}, \mathrm{Y}\) are the vectors containing the coodinates of the nodes to be generated.
    * BLOW, BUP, BLEFT, BRIGHT indicate the type of boundary condition at lower,
        upper, left and right edge of the rectangle
        * for scalar problems
            * \(\mathrm{B} *=-1\) : Dirichlet boundary condition
            * \(B *=-2\) : Neumann or Robin boundary condition
        * for elasticity problems
            * bi \(=-x y\) : with two digits for \(x\) and \(y\) directions
            * \(x / y=1\) : given displacement
            * \(x / y=2\) : force free
            * \(x / y=3\) : given force density
return values
    * MESH is a a structure with the information about the mesh.
        The mesh consists of n_e elements, n_n nodes and n_ed edges.
        * MESH.TYPE a string with the type of triangle: linear
        * MESH.ELEM n_e by 3 matrix with the numbers of the nodes forming triangular elements
        * MESH.ELEMAREA n_e vector with the areas of the elements
        * MESH.ELEMT n_e vector with the type of elements (not used)
```

* MESH.NODES n_n by 2 matrix with the coordinates of the nodes
* MESH.NODEST n_n vector with the type of nodes
* MESH.EDGES n_ed by 2 matrix with the numbers of the nodes forming edges
* MESH.EDGEST n_ed vector with the type of edge
* MESH.GP n_e*3 by 2 matrix with the coordinates of the Gauss points
* MESH.GPT n_e*3 vector of integers with the type of Gauss points
* MESH.NDOF number of DOF, degrees of freedom
* MESH.NODE2DOF n_n vector or n_n by 2 matrix of integers, mapping nodes to DOF
Sample call:
Mesh = CreateMeshRect(linspace(0,1,10),linspace (-1,2,20),-1,-1,-2,-2)
will create a mesh with }200\mathrm{ nodes and 0<= x<=1, -1<=y<=+2

```

With CreateMeshRect () generate meshes with elements of order 1. With the help of MeshUpgrade() (Section 4.1.6) you can upgrade to the same mesh with elements of order 2 or 3.

\subsection*{4.1.3 Using triangle: CreateMeshTriangle() and ReadMeshTriangle()}

With the command CreateMeshTriangle (name, xy, area) you can create a mesh with the outer borders given in xy. The mesh will satisfy a minimal angle condition of \(30^{\circ}\) to avoid distorted triangles. The function takes 3 or 4 input arguments.
- The string ' name' is the file name to be used to store the information.
- The matrix \(x y\) contains the edge points of the domain and the information on the boundary conditions.
- area is the typical are of the triangles to be used.
- The optional argument options can specify more flags to the external call of the program triangle.

The mesh can then be read by calling Mesh = ReadMeshTriangle ('name. \(1^{\prime}\) ). Examples of the usage are given in Sections 3.1.3 and 3.2 and in many of the examples in Section 9 starting on page 201.
```

 CreateMeshTriangle()
 MESH = CreateMeshTriangle(NAME,XY,AREA,OPTIONS)
 Generate files with a mesh with linear elements using the external code triangle
parameters:
* NAME the base filename: the file NAME.poly will be generated then
triangle will generate files NAME.1.* with the mesh
* XY vector containing the coordinates of the nodes forming the outer boundary.
The last given node will be connected to the first given node to create a closed curve.
The format for XY is [x1,y1,b1;x2,y2,b2; ...;xn,yn,bn] where
* xi x-coordinate of node i
* yi y-coordinate of node i
* bi boundary marker for segment from node i to node i+1
* for scalar problems
* bi = -1 Dirichlet boundary condition
* bi = -2 Neumann or Robin boundary condition
* for elasticity problems
* B* = -xy : with two digits for x and y directions
* x/y = 1 : given displacement
* x/y = 2 : force free
* x/y = 3 : given force density
* AREA the typical area of the individual triangles to be used
* OPTIONS additional options to be used when calling triangle.
The options "pa" and the area will be added automatically.
Default options are "q", resp. "qpa". To suppress the verbose information use "Q"
More options are available to adapt mesh sizes and create holes.

```

\section*{See the documentation in FEMdoc.pdf}

The information on the mesh generated is written to files and returned in the structure MESH, if the return argument is provided.
* The information can then be read and used by Mesh = ReadMeshTriangle('NAME.1');
* MESH is a structure with the information about the mesh.

The mesh consists of n_e elements, n_n nodes and n_ed edges.
* MESH.TYPE a string with the type of triangle: linear, quadratic or cubic
* MESH.ELEM n_e by 3 (or 6/10) matrix with the numbers of the nodes forming triangular elements
* MESH.ELEMAREA n_e vector with the areas of the elements
* MESH.ELEMT n_e vector with the type of elements (not used)
* MESH.NODES n_n by 2 matrix with the coordinates of the nodes
* MESH.NODEST n_n vector with the type of nodes (not used)
* MESH.EDGES n_ed by 2 (or 3/4) matrix with the numbers of the nodes forming edges
* MESH.EDGEST n_ed vector with the type of edge
* MESH.GP n_e*(3/7) by 2 matrix with the coordinates of the Gauss points
* MESH.GPT n_e*(3/7) vector of integers with the type of Gauss points
* MESH.NDOF number of DOF, degrees of freedom
* MESH.NODE2DOF n_n vector of integer, mapping nodes to DOF

Sample call:
Mesh = CreateMeshTriangle('Test', [0,-1,-1;1,-1,-2;1,2,-1;0,2,-2],0.01)
will create a mesh with \(0<=x<=1,-1<=y<=+2\) and a typical area of 0.01 for each triangle
Could be read by Mesh = ReadMeshTriangle('Test.1')
- With CreateMeshTriangle() generate meshes with elements of order 1. With the help of the command MeshUpgrade () (Section 4.1.6) you can upgrade to the same mesh with elements of order 2 or 3.
- If a return argument for CreateMeshTriangle () is provided, the mesh is returned.
- If no return argument is provided, the information is written to files. The generated mesh is then read by calling the function ReadMeshTriangle().

This function can also be used to read meshes generated by direct call of the external program triangle. This allows to use all features of triangle and not only the very restricted setup used by CreateMeshTriangle (). In Section 4.1.4 find the options to generate meshes with holes and adapted mesh sizes. To find more about the features of triangle use the web page www.cs.cmu.edu/~quake/triangle.html or compile and install the code and then run triangle -h to examine the built-in help.

\section*{ReadMeshTriangle()}
```

FEMMESH = ReadMeshTriangle(NAME.1)
read a mesh generated by CreateMeshTriangle(NAME)
parameter: NAME.1 the filename
return value: FEMMESH the mesh stored in NAME
Sample call:
CreateMeshTriangle('Test', [0,-1,-1;1,-1,-2;1,2,-1;0,2,-2],0.01)
Mesh = ReadMeshTriangle('Test.1');
will create a mesh with 0<=x<=1, -1<=y<=+2
and a typical area of 0.01 for each triangle

```

Find an example in Section 9.9.
With CreateMeshTriange() and ReadMeshTriangle() one can only generate meshes with elements of order 1. With the help of MeshUpgrade () (see Section 4.1.6) you can upgrade to the same mesh with elements of order 2 or 3 .

\subsection*{4.1.4 Adapting meshes and creating holes by using options of CreateMeshTriangle ()}

Give CreateMeshTriangle () more arguments to use some of the features of Triangle to locally create finer meshes or generate domains with holes. If more than 4 arguments are provided, then line segments, point with mesh sizes or holes can be generated. Each of the additional arguments is a structure with a name as first entry. There are four types of options:
- Segment: to create additional line segments, used to modify mesh sizes. The mandatory entry name=' Segment' has to be supplemented with one additional entry border. It lists the \(x\) and \(y\) coordinates of the points forming the segment, and the third entry 0 for each point.
```

Seg1.name = 'Segment'; %%%mandatory name
Seg1.border = [0 0 0; 1 0 0; 1 2 0] %% the points on the segment

```
- MeshSize: to specify the mesh size in one part of the domain. Besides the entry name=' MeshSize' two additional entries have to be provided. where with the \(x\) and \(y\) coordinates of the points where the maximal mesh size is given and area with the desired mesh size, i.e. the maximal area of the triangles.
```

Point1.name = 'MeshSize'; %% mandatory name
Point1.where = [1.5 0.2]; %% the point at which the mesh size is applied
Point1.area =0.01; %% maximal area in the selected area

```
- Hole: to create a hole in the domain. Besides the mandatory entry name \(=\) ' Hole' two additional entries border and point have to be provided. border lists the \(x\) and \(y\) coordinates of the points forming the hole, with the third entry indicating the type of boundary condition, according to Table 6 . The entry point has to contain the coordinates of one point inside the hole.
```

Hole1.name = 'Hole' %% mandatory name
Holel.border = [1 1 -22; 3 2 -22; 3 4-22; 1 2 -22] %% border of the hole
Holel.point = [1.1 1.1]; }%%\mathrm{ one point in the hole

```
L
- Option: to give more options, not documented yet.

There are a few points to watch out for when using the above optional arguments to CreateMeshTriangle ():
- The lines created by Segment shall not interfere with the holes.
- If Segment is used to divide the domain into multiple sections, the endpoints of the segments have to be exactly on the borders of the domain, but you can (often) not use the points defining the borders of the domain. A possible way out is described in Example 4-2 below.

4-1 Example : As a first example for the additional options for the command CreateMeshTriangle () examine a domain with a hole in the middle section and a finer mesh at the lower edge. Find the result of the code below in Figure 32. In most parts of the domain the area of the triangles is approximately 0.001 . Close to the hole the narrow section leads to smaller triangle and close to the lower edge the optional Segment leads to a finer mesh, visible in Figure 32(b).
```

MeshBorder = [0 0 -11; 0.1 0 -22; 1.1 1 -23; 1 1 -22]; %% outer boundary of the domain
Hole.name = 'Hole'; %% a hole in the middle section
Hole.border =[0.5+0.02 0.5 -22; 0.5+0.08 0.5 -22;0.6+0.08 0.6 -22; 0.6+0.02 0.6 -22];
Hole.point = [0.522 0.501];
Segment.name = 'Segment'; %% close to the lower edge
Segment.border = [0.01 0.01 0; 0.09 0.01 0];
Mesh = CreateMeshTriangle('Mesh1',MeshBorder,0.01/9, Hole, Segment);
figure(1); FEMtrimesh(Mesh); axis equal

```


Figure 32: A domain with a hole and a finer mesh at the lower edge

The above domain can be used for an elasticity computation. The lower edge is fixed and at the upper edge a vertical force is applied. At the lower edge Saint-Venant's principle applies, i.e. shearing is expected and thus a finer mesh should be used. Find the graphical result in Figure 33. In addition the transversal deflection \(\left(u_{2}-u_{1}\right) / \sqrt{2}\) along the center line is displayed. The result shows that the lever is behaving like a bending beam.
```

Mesh = MeshUpgrade(Mesh,'quadratic'); E = 100e9; nu = 0.3; f = 1;
[u1,u2] = PlaneStress(Mesh, E,nu, {0,0},{0,0},{0,f});
figure(2);clf; scale = 0.1/max(u2);
ShowDeformation(Mesh,u1,u2,scale); axis([0 1.2 0 1.2])
yi = linspace(0,1); xi = yi+0.05;
u1i = FEMgriddata(Mesh,u1,xi,yi); u2i = FEMgriddata(Mesh,u2,xi,yi);
bend = (u2i-u1i)/sqrt(2);
figure(3); plot(yi,bend); xlabel('x'); ylabel('(u_2-u_1)/sqrt(2)')

```


Figure 33: The deformed lever and the bending of the center line

4-2 Example : In this example a mesh with different size triangles is created on a unit square, see Figure 34. The first section of the code below generates the file Mesh2.poly, in which the two corners \((0,0)\) and \((1,1)\) are listed twice. This causes FEMoctave to issue a warning matrix singular to machine precision when solving the resulting linear system. To avoid this problem edit the file Mesh2.poly, remove the two "extra" points and modify the connection of points 1 and 3 .


Figure 34: A domain with a two different mesh sizes
```

 Mesh2.poly
 nodes
 2 1
 0.000000000000 0.000000000000-1
 1.000000000000000e+00 0.000000000000000e+00 -1
 1.000000000000000e+00 1.000000000000000e+00 -2
 0.000000000000000e+00 1.000000000000000e+00 -1
 0.000000000000000e+00 0.000000000000000e+00 0
 1.000000000000000e+00 1.000000000000000e+00 0
 segments
 1
 2 -1
 3-2
 4 -2
 4 1 -1
 560
 holes
 area markers
0.100000 0.900000 0 0.100000
0.900000 0.100000 0 0.002000
generate mesh by : triangle -Qpq30a Mesh2.poly

```

Save the new file as Mesh2 mod.poly and run triangle, either by triangle -pq30a Mesh2 mod.poly from a command line or by system('triangle -Qpq30a Mesh2_mod.poly') within Octave.

\section*{Mesh2_mod.poly}
```

nodes
2 0 1
0.000000000000 0.000000000000-1
1.000000000000000e+00 0.000000000000000e+00 -1
1.000000000000000e+00 1.000000000000000e+00 -2

```
```

0.000000000000000e+00 1.000000000000000e+00 -1
segments
1
1 2 -1
3 -2
4 -2
1 -1
1 3 0
holes
area markers
0.100000 0.900000 0 0.100000
0.900000 0.100000 0 0.002000
generate mesh by : triangle -Qpq30a Mesh2_mod.poly

```

Then read the new mesh by Mesh \(=\) ReadMeshTriangle ('Mesh2_mod.1'). The resulting mesh avoids the Octave warning.

\subsection*{4.1.5 Adding constraints to a node in the mesh}

On occasion it is convenient to add additional constraints at single points in the mesh. For this task femoctave command MeshAddConstraint () can be used. The command
- finds the node in the mesh with the coordinates closest to the given position.
- adds the desired constraint at the selected node.

\section*{MeshAddConstraint()}
```

MESH = MeshAddConstraint (MESH,POSITION,MODE)
apply additional constraints
parameters:
* MESH is the mesh describing the domain
* POSITION coordinates of the node, may be approximate
* MODE mode of the node with the additional constraint
* MODE = -1: fixed value for scalar problems
* MODE = [-1,-1]: fixed x and y displacements for elasticity
* MODE = [-1,-2]: fixed x-displacement for elasticity
* MODE = [-2,-1]: fixed y-displacement for elasticity
return values:
* MESH the new mesh with the additional constraints

```

Find examples in Sections 5.13.1 and 5.13.2.

\subsection*{4.1.6 Converting meshes: upgrading and downgrading}

Given a mesh MeshLin with first order elements one can generate the same mesh with elements of order 2 by calling the command MeshUpgrade (MeshLin,' quadratic'). The numbering of the nodes of the linear elements is preserved in the mesh with the quadratic elements. The new nodes are placed at the midpoints of the edges of the triangles. With MeshUpgrade (MeshLin,' cubic') a mesh with 10 node cubic elements is generated. Examine Figure 71 on page 135 on how the nodes are placed within the triangles.
```

MeshUpgrade()
MESHNEW = MeshUpgrade(MESHLIN,TYPE)
convert a mesh MESHLIN of order 1 to a mesh MESHNEW of order 2 or 3
parameters:
* MESHLIN the input mesh of order 1
* TYPE is a string, either 'quadratic' or 'cubic'
the default is 'quadratic'
return value: MESHNEW the output mesh of order 2 or 3

```

As example generate a mesh with elements of order 1 on the rectangle \(0 \leq x, y \leq 2\) with Dirichlet conditions on three edges and a Neumann condition on the upper edge at \(y=2\). In Figure 35 find the mesh with the types of nodes indicated and the numbering of the resulting degrees of freedom.
```

N = 3;
FEMmesh1 = CreateMeshRect(linspace(0,2,N+1),linspace(0,2,N+1),-1,-2,-1,-1);
FEMmeshQ = MeshUpgrade(FEMmesh1,'quadratic');

```

(a) linear elements

(b) quadratic elements

Figure 35: The same mesh with linear or quadratic elements. The types of the nodes are marked in green. Dirichlet nodes are marked by -1 , Neumann nodes by -2 and interiour nodes by +1 . The numbering of the resulting degrees of freedom is shown in blue. For Dirichlet nodes a DOF of 0 is used.

Using MeshQuad2Linear () one can convert a mesh of order 2 to a mesh of order 1. The nodes will remain unchanged, but there will be a factor of 4 more elements. With this function one can compare results based on first or second order elements, using exactly the same degrees of freedom.
```

 MeshQuad2Linear()
    ```
```

MESHLIN = MeshQuad2Linear (MESHQUAD)

```
MESHLIN = MeshQuad2Linear (MESHQUAD)
    convert a mesh MESHQUAD of order 2 to a mesh MESHLIN of order 1
    convert a mesh MESHQUAD of order 2 to a mesh MESHLIN of order 1
    parameter: MESHQUAD the input mesh of order 2
    parameter: MESHQUAD the input mesh of order 2
    return value: MESHLIN the output mesh of order 1
```

 return value: MESHLIN the output mesh of order 1
    ```

An example is shown in Section 3.1.4.
Using MeshCubic2Linear () one can convert a mesh of order 3 to a mesh of order 1. The nodes will remain unchanged, but there will be a factor of 9 more elements. With this function one can compare results based on first or third order elements, using exactly the same degrees of freedom.

MeshCubic2Linear()
```

MESHLIN = MeshCubic2Linear(MESHCUBIC)
convert a mesh MESHCUBIC of order 3 to a mesh MESHLIN of order 1
parameter: MESHCUBIC the input mesh of order 3
return value: MESHLIN the output mesh of order 1

```

A combination of MeshUpgrade () and subsequent MeshQuad2Liner() or MeshCubic2Liner() can be used to refine meshes.

\subsection*{4.1.7 Use delaunay () to create a mesh: Delaunay 2 Mesh ()}

It is possible to use the Octave command delaunay () to generate a triangulation of a convex domain and then the command Delaunay2Mesh () to generate a mesh to be used by FEMoctave.
- The generated mesh consists of elements of order one. Use MeshUpgrade () to work with elements of order two or three.
- At first all boundary points are marked as Dirichlet points. Change the type description in the mesh if you want Neumann points.
```

Delaunay2Mesh()
FEMMESH = Delaunay2Mesh(TRI,X,Y)
generate a mesh with elements of order 1, using a Delaunay triangulation
parameters:
* TRI the Delaunay triangulation
* X,Y the coodinates of the points
return value
* FEMMESH is the mesh to be used by FEMoctave

```

Observe that the quality of the mesh might be very poor, e.g. triangles with very small angles. As example have a look at the upper edge on the right of the mesh in Figure 36. For almost all cases triangle will generate meshes of better quality. To generate the domain and the solution in Figure 36 use the code below.
```

\squareTestDelaunay.m
[x,y] = meshgrid(linspace(-1,1,20)); x = x(:); y = y(:);
ind = find(y<1-0.5*x+0.001); x = x(ind); y = y(ind);
ind = find(x+y>-0.001); }x=x(ind); y = y(ind)
tri = delaunay(x,y);
figure(1); triplot(tri,x,y); hold on; plot(x,y,'*'); hold off
xlabel('x'); ylabel('y');
FEMmesh = Delaunay2Mesh(tri,x,y); FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
u = BVP2Dsym(FEMmesh, 1,0,4,0,0,0);
figure(2); FEMtrimesh(FEMmesh,u) xlabel('x'); ylabel('y'); view([100,45])
figure(3); clf; FEMtricontour(FEMmesh,u); xlabel('x'); ylabel('y');

```

\subsection*{4.1.8 Deforming meshes by MeshDeform ()}

With the function MeshDeform () the nodes of a linear mesh can be deformed.

\section*{MeshDeform()}
```

MeshDeformed = MeshDeform(MESH,DEFORM)
Deform the nodes of MESH by the transformation DEFORM
parameters:
* MESH the initial mesh with linear elements
this has to be a mesh with linear elements
* DEFORM the transformation formula
the function DEFORM takes one argument XY, a n by 2 matrix with the
x and y components in colums and returns the result in a n by 2 matrix.

```


Figure 36: A mesh generated by a Delaunay triangulation and the solution of a BVP
```

return value
* DEFORMEDMESH the deformed mesh consistes of linear elements
use MESHUPGRADE to generate quadratic or cubic elements

```

One should pay attention to not deform the triangles in the mesh too badly by MeshDeform (), as this might decrease the accuracy of the solutions. The mesh generated by MeshCreateTriangle () will respect the condition of minimal \(30^{\circ}\) angles. After calling MeshDeform () this condition could be violated. Another option is to deform the borders of the mesh first, and then call CreateMeshTriangle (). In this case the minimal angle condition is respected.

To generate the quarter of a ring in Figure 51 on page 107 use polar coodinates
\[
\binom{x}{y}=\binom{r \cdot \cos \varphi}{r \cdot \sin \varphi} \quad \text { with } \quad 1 \leq r \leq 2 \quad \text { and } \quad 0 \leq \varphi \leq \frac{\pi}{2}
\]
```

FEMmesh = CreateMeshTriangle('Test',[1,0,-1;2,0,-1;2,pi/2,-2;1,pi/2,-1],0.1^2);
function xy_new = Deform(xy) %% use polar coordinates
xy_new = [xy(:,1).*\operatorname{cos}(xy(:,2)), xy(:,1).*\operatorname{sin}(xy(:,2))];
endfunction
FEMmesh = MeshDeform(FEMmesh,'Deform');
FEMtrimesh (FEMmesh)

```

Find an example in Section 9.1.

\subsection*{4.2 Evaluation and displaying results}

\subsection*{4.2.1 Display results on meshes, FEMt rimesh(), FEMtrisurf(), and FEMtricontour()}

To display the results of the computations very elementary wrappers around trimesh(), trisurf() and tricontour() are provided. \({ }^{9}\)
- With FEMt rimesh () display a function \(u\) as a 3D mesh. If no values for \(u\) are provided, the 2D mesh is displayed.
- With FEMtrisurf() display a function \(u\) as a 3D surface. The syntax is identical to FEMt rimesh ().
- With FEMtricontour () display level curves of a function \(u\). The syntax similar to the above. Unfortunately the command FEMtricontour () exhibits a problem and it is advisable to clear the figure by a command clf before creating a contour plot.

All functions accept meshes with linear, quadratic or cubic elements.
- For quadratic elements the 6 nodes in each element are connected by straight lines, i.e. as if one second order triangle would be composed of 4 first order triangles.

\footnotetext{
\({ }^{9}\) It is obviously possible to improve the wrappers, as non of the advanced features of trimesh () or trisurf() is passed through. If you want to use those, have a look at the elementary code in the FEMt ri* functions and copy the necessary lines in to your code.
}
- For cubic elements the 10 nodes in each element are connected by straight lines, i.e. as if one third order triangle would be composed of 9 first order triangles.
```

 FEMtrimesh()
 FEMtrimesh (MESH, U)
display a solution U on a triangular mesh
parameters:
* MESH is the mesh
* U values of the function to be displayed
| if U is not given, then the mesh is displayed in 2D
|_ FEMtrisurf() —

```
                                    FEMtricontour()
    FEMtricontour (MESH, U, V)
        display contours of a solution \(U\) on a triangular mesh
        parameters:
            * MESH is the mesh
            * U values of the function to be displayed
            * V contours to be used, default value is 21
                if \(V\) is scalar, it is the number of contours
                if \(V\) is a vector, it is the levels of the contours

\subsection*{4.2.2 Evaluate the gradient of a function at the nodes: FEMEvaluateGradient ()}

Given the values \(u\) of a function at the nodes, the two components of the gradient can be computed with the function FEMEvaluateGradient().
```

 FEMEvaluateGradient()
 [UX,UY] = FEMEvaluateGradient (MESH,U)
 evaluate the gradient of the function u at the nodes
 parameters:
 * MESH is the mesh describing the domain and the boundary types
 * U vector with the values of the function at the node
 return value
 * UX x component of the gradient of u
 * UY y component of the gradient of u
 the values of the gradient are determined on each element
 at the nodes the average of the gradient of the elements is used
    ```

The gradient is determined on each of the elements, using either linear, quadratic or cubic interpolation. Then at each node the average of the values of the gradient of the neighboring triangles is returned. This is different from the results generated by FEMgriddata (). Examples are given in Sections 5.1, 9.3, 9.4, 9.5 and 9.10. Due to using broadcasting in the Octave code (bsxfun ()) the code is fast! This function could be used (or is that abused?) to evaluate derivatives of functions given on an irregular grid!

\subsection*{4.2.3 Evaluate a function and its gradient at the Gauss points: FEMEvaluateGP ()}

Given the values \(u\) of a function at the nodes, the values of \(u\) and its gradient can be computed at the Gauss points by calling FEMEvaluategP (). For first order elements a piecewise linear interpolation is used, thus the gradients will be constant on each triangular element. For second order elements a quadratic interpolation is used. For third order elements a cubic interpolation is used.
```

FEMEvaluateGP()
[UGP,GRADUGP] = FEMEvaluateGP (MESH,U)
evaluate the function and gradient at the Gauss points
parameters:
* MESH is the mesh describing the domain and the boundary types
* U vector with the values of at the nodes
return values
* UGP values of u at the Gauss points
* GRADUGP matrix with the values of the gradients in the columns

```

Examples are given in Sections 9.8 and 9.10.

\subsection*{4.2.4 Integrate a function over the domain: FEMIntegrate ()}

Given a function name, the values of a function at the nodes or at the Gauss points one can integrate this function over the domain given by the mesh. There are different methods used, all based on the Gauss integration presented in Section 6.3.2.
- If a function name is specified, then this function will be evaluated at the Gauss points and then integrated.
- If a scalar value is given, then the function is assumed to be constant.
- If a column vector is given with as many components as nodes in the mesh, then an element wise interpolation is used to obtain the values at the Gauss points. The function FEMEvaluateGP () is used to find the values at the Gauss points.
- If a column vector is given with as many components as Gauss points in the mesh, then these are used as values at the Gauss points.
```

\squareFEMIntegrate()
NUMINTEGRAL = FEMIntegrate (MESH,U)
integrate a function u over the domain given in Mesh
parameters:
* MESH is the mesh describing the domain
* U the function to be integrated
can be given as function name to be evaluated or as scalar
value, or as a vector with the values at the nodes or the Gauss points.
return value
* NUMINTGERAL the numerical approximation of the integral

```

As a simple example integrate the function \(u(x, y)=x y^{3}\) over the unit square \(0 \leq x, y \leq 1\). The exact integral equals \(\frac{1}{8}\), but you have to subtract the exact value to see the difference to the numerical evaluation with the Gauss points. This is not unusual, since the Gauss integration leads to very accurate approximations, if the function is smooth. Linear elements use 3 integration points in each triangle, quadratic and cubic meshes use 7 integration points in each triangle. Thus integrations using a linear mesh might not be as accurate.
```

N = 40; Mesh = CreateMeshRect(linspace (0,1,N),linspace(0,1,N),-2,-2,-2,-2);
function res = f_int(xy) res = xy(:,1).*xy(:,2).^3; endfunction
integral1 = FEMIntegrate(Mesh,'f_int') % using the function name
uGP = feval('f_int',Mesh.GP);
integral2 = FEMIntegrate(Mesh,uGP) % using the values at the Gauss points
-->
integral1 = 0.12500
integral2 = 0.12500

```

To determine the area of a domain \(\Omega \subset \mathbb{R}^{2}\) one can integrate the constant 1 over the domain. More examples are given in Sections 5.1, 9.1, 9.8 and 9.10.

\subsection*{4.2.5 Evaluation at arbitrary points or along curves, integration along curves: FEMgriddata ()}

Given a function by the values at the nodes of a mesh use the command FEMgriddata() to evaluate the function at arbitrary points.
- The value of the function and the partial derivatives can be evaluated.
- Depending on the mesh provided either a piecewise linear, quadratic or cubic interpolation is used.
- If a point \(\left(x_{i}, y_{i}\right)\) is on the edge of a triangle it is a matter of rounding which of the neighboring triangles is used for the interpolation. Since all elements used by FEMoctave are \(C^{0}\) conforming, this has no influence on the value of the function. The elements are not \(C^{1}\) conforming and thus the partial derivatives will jump across element boundaries. See also Section 5.3 starting on page 102.
- If a point \(\left(x_{i}, y_{i}\right)\) is not in a triangle, then NaN is returned.
- The evaluation is very fast, even for large numbers of elements and interpolation points.
- Evaluation along arbitrary curves is possible, and fast. Then use trapz () to integrate along curves. Find examples in Sections 9.5 and 9.17.
```

\a()
[UI,UXI,UYI] = FEMgriddata(MESH,U,XI,YI)
evaluate the function (and gradient) at given points by interpolation
parameters:
* MESH is the mesh describing the domain
If MESH consists of linear elements, piecewise linear interpolation is used.
If MESH consists of quadratic elements, piecewise quadratic interpolation is used.
If MESH consists of cubic elements, piecewise cubic interpolation is used.
* U vector with the values of the function at the nodes
* XI, YI coordinates of the points where the function is evaluated
return values:
* UI values of the interpolated function u
* UXI x component of the gradient of u
* UYI y component of the gradient of u
The values of the function and the gradient are determined on each element by
a piecewise linear, quadratic or cubic interpolation.
If a point is not inside the mesh NaN is returned.

```

This function is similar to FEMEvaluateGradient (), but allows to evaluate at arbitrary points. At the nodes the value of the gradient in one of the triangles is returned. As a consequence the results generated by the command FEMEvaluateGradient () look smoother on occasion.

The code below evaluates a function on an L-shaped domain on a rectangular grid. Find the result in Figure 37.
```

nodes = [0,0,-2;1,0,-2;1,1,-2;-1,1,-2;-1,-1,-2;0,-1,-2];
Mesh = CreateMeshTriangle('Ldomain',nodes,0.002);
x = Mesh.nodes(:,1); y = Mesh.nodes(:,2);
function res = f_int2(xy) res = sin(pi*xy(:,1)).^2.*xy(:,2)+1; endfunction
u = feval('f_int2',Mesh.nodes);
N = 51; [xi,yi] = meshgrid(linspace(-1,1,N)); %% generate the uniform grid
tic(); ui3 = FEMgriddata(Mesh,u,xi,yi); toc()
figure(1); mesh(xi,yi,ui3)
xlabel('x'); ylabel('y'); zlabel('u')
-->
Elapsed time is 0.0075829 seconds.

```

Examples are given in Sections 5.3, 9.3, 9.5, 9.9, 9.11 and 9.17.


Figure 37: A function evaluated on a uniform grid

\subsection*{4.3 How to define functions}

There are three basic techniques to define functions in Octave to be used with FEMoctave.
- If the function is a constant you can simply use this scalar as input argument.
- You may provide the function name of the function to be called to compute the values of the function. Observe that the function has to be vectorized \({ }^{10}\). Due to a recent change in Octave the script versions should use a dummy second argument \({ }^{11}\). The function can be implemented as a name.m Octave function or as dynamically linked function name. oct, written in C++.
- You can provide a vector of the correct size with all the values of the function at the Gauss integration points of the mesh.

Section 9 contains many examples or you may examine the examples below.

\subsection*{4.3.1 Functions for static problems}

The functions BVP2D(), BVP2Dsym() and BVP2Deig() accept the coefficient functions as input parameters. These functions accept (currently) one parameter, a matrix with two columns. The first (resp. second) column contains the \(x\) (resp. \(y)\) coordinates of the points at which the function is to be evaluated.

As a first example consider the function \(f(x, y)=7\). There are three options:
1. Pass the constant 7 as scalar to the FEMoctave function. This is the preferred approach.
2. Define a function
    function res = ff(xy,dummy)
        res = 7*ones(size(yz) (1),1);
    endfunction
L
```

and then pass the string ' ff ' to the FEMoctave function.
3. Determine the vector of the correct size by

Octave

[^6]```
ffVec = 7 * ones(size(mesh.GP) (1),1);
L
```

and then pass the vector ffVec to the FEMoctave function.

For the second example function

$$
f(x, y)=7+2 x
$$

the option constant is not applicable. There are two equally valid methods.

1. Define a function
function res $=f f(x y$, dummy $)$
res $=7+2$ *xy (:, 1);
endfunction
$\square$
and then pass the string ' ff ' to the FEMoctave function.
2. Determine the vector of the correct size by
```
ffVec = 7 + 2*xy(:,1);
```

and then pass the vector $f f V e c$ to the FEMoctave function.

To implement the function

$$
f(x, y)=J_{0}(r)=J_{0}\left(\sqrt{x^{2}+y^{2}}\right)
$$

to be passed to the FEMoctave command use

```
function y = f(xy)
 y = besselj(0,sqrt(xy(:,1).^2+xy(:,2).^2));
endfunction
```

With this definition pass the string ' $f$ ' to the FEMoctave function. Alternatively you can first compute the column vector fVec of this function at the Gauss points of the mesh by

```
fVec = f(mesh.GP);
```

and then pass the vector fVec to the FEMoctave function.

### 4.3.2 Functions for dynamic problems

The only change is the additional time $t$, to be passed as a second argument, i.e. $f(x y, t)=\ldots$.

### 4.4 Solving elliptic problems

The first few commands shown in Table 1 can be used to solve elliptic problem on a bounded domain $\Omega \subset \mathbb{R}^{2}$. In the next two sections the commands to solve a symmetric and a non-symmetric elliptic BVP are shown.

### 4.4.1 Symmetric elliptic problems: BVP 2D sym ()

Equations given in the form of (2)

$$
\begin{array}{rlrl}
-\nabla \cdot(a \nabla u)+b_{0} u & =f & & \text { for } \\
u & (x, y) \in \Omega \\
& =g_{1} & & \text { for }
\end{array}(x, y) \in \Gamma_{1}, ~(x, y) \in \Gamma_{2}
$$

is solved by

```
u = BVP2Dsym(mesh,a,b0,f,g1,g2,g3)
```

where the coefficient functions can be given as described in Section 4.3.1, as constants, strings or vectors. The return value $u$ is a vector with the values of the solution at the nodes.

```
U = BVP2Dsym(MESH,A,B0,F,GD,GN1,GN2)
 Solve a symmetric, elliptic boundary value problem
\[
\begin{array}{rlrl}
\operatorname{-div}(a * g r a d u)+b 0 * u & =f & & \text { in domain } \\
u & =g D & & \text { on Dirichlet boundary } \\
n *(a * g r a d u) & =g N 1+g N 2 * u \text { on Neumann boundary }
\end{array}
\]
 parameters:
 * MESH is the mesh describing the domain and the boundary types
 * A,B0,F,GD,GN1,GN2 are the coefficients and functions describing the PDE.
 Any constant function can be given by its scalar value.
 The functions A,B0 and F may also be given as vectors with the
 values of the function at the Gauss points.
 return value
 * U is the vector with the values of the solution at the nodes
```

$\bigsqcup$

Find examples in Sections 3.1.1, 3.1.2, 3.1.3, 9.4, 9.5, 9.8 and 9.17.

### 4.4.2 General elliptic problems: BVP 2D ()

Equations given in the form of (1)

$$
\begin{array}{rlrl}
-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u & =f & & \text { for } \\
u & (x, y) \in \Omega \\
& =g_{1} & & \text { for } \\
\vec{n} \cdot(x, y) \in \Gamma_{1} \\
& =g_{2}+g_{3} u & & \text { for }
\end{array} \quad(x, y) \in \Gamma_{2}
$$

is solved by
$\square$
Octave
$u=\operatorname{BVP} 2 \mathrm{D}($ mesh $, \mathrm{a}, \mathrm{b} 0, \mathrm{bx}, \mathrm{by}, \mathrm{f}, \mathrm{g} 1, \mathrm{~g} 2, \mathrm{~g} 3)$
where the coefficient functions can be given as described in Section 4.3.1, as constants, strings or vectors. The expressions bx and by denote the two components of the convection vector $\vec{b}$. The return value u is a vector with the values of the solution $u$ at the nodes. Find an example in Section 3.1.4.

## BVP2D()

$\mathrm{U}=\mathrm{BVP} 2 \mathrm{D}(\mathrm{MESH}, \mathrm{A}, \mathrm{B} 0, \mathrm{BX}, \mathrm{BY}, \mathrm{F}, \mathrm{GD}, \mathrm{GN} 1, \mathrm{GN} 2)$
Solve an elliptic boundary value problem

$$
\begin{array}{rlrlrl}
-\operatorname{div}(a * g r a d ~ u-u *(b x, b y))+b 0 * u & =f & & \text { in domain } \\
u & =g D & & \text { on Dirichlet boundary } \\
n *(a * g r a d u-u *(b x, b y)) & =g N 1+g N 2 * u \text { on Neumann boundary }
\end{array}
$$

parameters:

* MESH is the mesh describing the domain and the boundary types
* A, B0, BX, BY, F, GD, GN1,GN2 are the coefficients and functions describing the PDE. Any constant function can be given by its scalar value. The functions $A, B 0, B X, B Y$ and $F$ may also be given as vectors with the values of the function at the Gauss points.
return value
* U is the vector with the values of the solution at the nodes


### 4.5 Solving 2D eigenvalue problems: BVP 2Deig ()

To solve an eigenvalue problem of the form (3)

$$
\begin{aligned}
& -\nabla \cdot(a \nabla u)+b_{0} u=\lambda f u \quad \text { for } \quad(x, y) \in \Omega \\
& u=0 \quad \text { for } \quad(x, y) \in \Gamma_{1} \\
& a \frac{\partial u}{\partial n}=g_{3} u \quad \text { for } \quad(x, y) \in \Gamma_{2}
\end{aligned}
$$

use

```
 Octave
[Eval, Evec, errorbound] = BVP2Deig(mesh, a,b0,f,gN2,nVec,tol);
```

where the coefficient functions can be given as described in Section 4.3.1, as constants, strings or vectors.

- The function can be called with one (Eval) or two ([Eval, Evev]) return arguments. A possible third return argument ([Eval, Evec, errorbound]) is of limited use, since with newer versions of FEMoctave eigs () is used, instead of an inverse power iteration.
- The first return value Eval is a column vector containing the estimated values of the eigenvalues $\lambda_{i}$.
- If the second return value Evec is asked for, then a matrix will be returned. Each column contains the values of a normalized eigenfunction at the nodes.
- The third return argument errorbound will return a matrix with two columns, containing information on the error bound of the eigenvalues. Observe that the error of the eigenvalue computation is given, not the error of the overall FEM problem. The error of the FEM discretization has to be estimated by other tools. Some mathematical details are given in Section 6.9.
* The first column contains a conservative error estimate. The actual error of the eigenvalue is guaranteed to be smaller.
* The second column contains a more aggressive error estimate. Under most circumstances the estimate is valid. For highly clustered eigenvalues the error is overestimated.. There are circumstances when the error of the largest eigenvalues is underestimated. If the error is extremely small, the estimate might indicate an even smaller error. Keep in mind that the error is always larger than machine accuracy permits.
- The integer parameter nVec indicate the number of smallest eigenvalues to be be computed.
- The parameter tol will lead to the iteration stopping if the relative change from one step to the next is smaller than tol. If the parameter is not given, then a default value of $10^{-5}$ is used.
An example of an eigenvalue problem is given in Section 3.2.

```
[EVAL,EVEC,ERRORBOUND] = BVP2Deig(MESH,A,B0,W,GN2,NVEC,TOL)
 determine the smallest eigenvalues EVAL and eigenfunctions EVEC for the BVP
 -div(a*grad u)+ b0*u = Eval*W*u in domain
 u = 0 on Dirichlet boundary
 n*(a*grad u) = gN2*u on Neumann boundary
 parameters:
 * MESH is the mesh describing the domain and the boundary types
 * A,B0,W,GN2 are the coefficients and functions describing the PDE.
 Any constant function can be given by its scalar value.
 The functions A,B0 and W may also be given as vectors with the
 values of the function at the Gauss points.
 * NVEC is the number of smallest eigenvalues to be computed
 * TOL optional tolerance for the eigenvalue iteration, default le-5
 return values:
 * EVAL is the vector with the eigenvalues
 * EVEC is the matrix with the eigenvectors as columns
 * ERORBOUND is a matrix with error bounds of the eigenvalues
```

In Sections 6.8.2 and 6.8.4 find the consequences of the eigenvalues to solutions of dynamic heat and wave equations.

### 4.6 Solving parabolic problems: IBVP2D () and IBVP 2D sym ()

To solve an initial boundary value problem (IBVP) of the form (4)

$$
\begin{aligned}
\rho \frac{\partial}{\partial t} u-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u & =f & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
u & =g_{1} & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \\
\vec{n} \cdot(a \nabla u-u \vec{b}) & =g_{2}+g_{3} u & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \\
u & =u_{0} & & \text { on } \Omega \text { at } t=0
\end{aligned}
$$

use the command IBVP2D (). Find an example in Section 3.3 and a description of the algorithm in Section 6.8.1.

```
IBVP2D()
[U,T] = IBVP2D (MESH, M, A, B0,BX,BY,F,GD, GN1, GN2, U0,T0,TEND, STEPS,OPTIONS)
Solve an initial boundary value problem
\(m * d / d t\) u - div(a*grad u-u*(bx,by)) + b0*u = f in domain
 \(u=g D \quad\) on Dirichlet boundary
\(n *(a * g r a d u-u *(b x, b y))=g N 1+g N 2 * u\) on Neumann boundary
 \(u(t 0)=u 0 \quad\) initial value
```

parameters:
* MESH is the mesh describing the domain and the boundary types
* M, A, B0, BX, BY, F, GD, GN1, GN2 are the coefficients and functions
describing the PDE. Any constant function can be given by its scalar value.
The functions $\mathrm{M}, \mathrm{A}, \mathrm{BO}, \mathrm{BX}, \mathrm{BY}$ and F may also be given as vectors
with the values of the function at the Gauss points.
* $F$ may be given as a string for a function depending on ( $x, y$ )
and time $t$ or a vector with the values at nodes or as scalar.
If $F$ is given by a scalar or vector it is independent on time.
* UO is the initial value, can be given as a constant, function
name or as vector with the values at the nodes
* TO, TEND are the initial and final times
* STEPS is a vector with one or two positive integers.
If $\operatorname{STEPS}=\mathrm{n}$, then n Crank Nicolson steps are taken and the results returned.
If $\operatorname{STEPS}=[n, n i n t]$, then $n *$ nint steps are taken and ( $n+1$ ) results returned.
* OPTIONS additional options, given as pairs name/value. Currently only the stepping
algorithm can be selected as "SOLVER" and the possible values
* "CN" the standard Crank-Nicolson (default)
* "IMPLICIT" the standard implicit solver
* "EXPLICIT" the standard explicit solver
* "RK" an L-stable, implicit Runge-Kutta solver
return values
* $U$ is a matrix with $n+1$ columns with the values of the solution at the nodes
at different times $T$
* $T$ is the vector with the values of the times at which the solutions are returned.

If there is no convection term $\vec{b}=\overrightarrow{0}$, then the resulting matrix $\mathbf{A}$ is symmetric and (most often) positive definite. Thus one can use a Cholesky factorization for the time stepper. This is (or should be) faster. The structure of IBVP2Dsym () is almost identical to IBVP2D ().

## IBVP2Dsym()

```
IBVP2Dsym(MESH, M, A, B0, F, GD, GN1, GN2,U0,T0,TEND,STEPS)
 Solve a symmetric initial boundary value problem
 m*d/dt u - div(a*grad u) + b0*u = f in domain
 u = gD on Dirichlet boundary
 n* (a*grad u) = gN1+gN2*u on Neumann boundary
 u(t0) = u0 initial value
```


### 4.7 Solving hyperbolic problems: $\operatorname{I2BVP} 2 \mathrm{D}$ ()

Examine an IBVP (6) of hyperbolic type.

$$
\begin{array}{rlrl}
\rho \frac{\partial^{2}}{\partial t^{2}} u+2 \alpha \frac{\partial}{\partial t} u-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
u & =g_{1} & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \\
\vec{n} \cdot(a \nabla u-u \vec{b}) & =g_{2}+g_{3} u & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \\
u & =u_{0} & & \text { on } \Omega \text { at } t=0 \\
\frac{\partial}{\partial t} u & =v_{0} & & \text { on } \Omega \text { at } t=0
\end{array}
$$

To solve this wave type equation use the command I2BVP2D (). Find examples in Sections 9.2 and 9.13 and a description of the algorithm in Section 6.8.3.

```
[U,T] = I2BVP2D(MESH,M,D,A,B0,BX,BY,F,GD,GN1,GN2,U0,VO,T0,TEND,STEPS,OPTIONS)
Solve an initial boundary value problem
 m*d^2/dt^2 u + 2*d*d/dt u - div(a*grad u-u*(bx,by)) + b0*u = f in domain
 u = gD on Dirichlet boundary
 n*(a*grad u -u*(bx,by)) = gN1+gN2*u on Neumann boundary
 u(t0) = u0 initial value
 d/dt u(t0) = v0 initial velocity
parameters:
 * MESH is the mesh describing the domain and the boundary types
 * M,D,A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
 describing the PDE.
 Any constant function can be given by its scalar value.
 The functions M,D,A,BO,BX,BY and F may also be given as
 vectors with the values of the function at the Gauss points.
 * F may be given as a string for a function depending on (x,y)
 and time t or a a vector with the values at nodes or as scalar.
 If F is given by a scalar or vector it is independent on time.
 * UO,VO are the initial value and velocity, can be given as a constant,
 function name or as vector with the values at the nodes
 * TO, TEND are the initial and final times
 * STEPS is a vector with one or two positive integers.
 * If STEPS = n, then n steps are taken and the n+1 results returned.
 * If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.
 * OPTIONS additional options, given as pairs name/value. Currently only
 the stepping algorithm can be selected as "SOLVER" and the possible values
 * "IMPLICIT" the standard implicit solver (default)
 * "EXPLICIT" the standard explicit solver
 return values
 * U is a matrix with n+1 columns with the values of the solution at the nodes
 at different times T
 * T is the vector with the values of the times at which the solutions are returned
```


### 4.8 Solving 1D steady state problems, BVP 1D ()

To solve a steady state boundary value problem (7), i.e.

$$
-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=d(x) f(x)
$$

with boundary conditions (8) at $x=x_{0}$ and $x=x_{n}$

$$
\begin{aligned}
u\left(x_{i}\right) & =g_{D} & & \text { Dirichlet } \\
a\left(x_{i}\right) u^{\prime}\left(x_{i}\right) & =g_{N 1}+g_{N 2} u\left(x_{i}\right) & & \text { Neumann }
\end{aligned}
$$

use the command BVP1D ().

| command | purpose |
| :--- | :--- |
| BVP1D() | solve a static boundary value problem in 1D |
| IBVP1D() | solve a first order initial boundary value problem in 1D |
| I2BVP1D() | solve a second order initial boundary value problem in 1D |
| BVP1Deig() | solve an eigenvalue problem in 1D |
| BVP1DNL() | solve a nonlinear boundary value problem in 1D |
| IBVP1DNL() | solve a dynamic nonlinear boundary value problem in 1D |
| GenerateFEM1D() | generate the matrices for BVP1D() |
| pwquadinterp() | piece-wise quadratic interpolation |
| FEM1DEvaluateDu() | evaluate the first derivative at the nodes |
| FEM1DGaussPoints() | determine the coordinates of the Gauss points and interpolation |
| GenerateWeight1D() | weight matrices for the dynamic 1D problems |

Table 7: Commands to solve and examine 1D boundary value problems
For a call of BVP1D ()

$$
[\mathrm{x}, \mathrm{u}]=\text { BVP1D }(\text { interval, } a, b, c, d, f, \text { BCleft, BCright })
$$

the following parameters are required:

- interval: the interval on which the BVP will be solved. It has the form interval $=\left[x_{1}, x_{1}, x_{2}, \ldots, x_{n}\right]$. On each subinterval $\left[x_{i}, x_{i+1}\right]$ the midpoint $\frac{x_{i}+x_{i+1}}{2}$ will be added and then quadratic function on the subinterval will be used for the computations.
- $a, b, c$ and $d:$ these coefficient functions can be given either as constant scalar value, as vector or as function handle ${ }^{12}$ to determine the values.
- The scalar constant will be used as value at the Gauss points.
- The vector has to contain the values at the Gauss points.
- The function handle will be evaluated at the Gauss points.

The code has to be vectorized, e.g. to describe the coefficient $a(x)=x^{2}$ use the vectorized function handle $\mathrm{a}=$ @ (x) x. $\wedge 2$.

- f : this function can be given as constant scalar, as vector or as a vectorized function handle. f will determine the values of the function $f(x)$ at the nodes, i.e. the end- and mid-points of the subintervals.
- The scalar constant will be used as value at all of the nodes.
- The vector has to contain the values at the nodes.
- The function handle will be evaluated at the nodes.
- There are two ways to define the inhomogeneous contribution $d(x) f(x)$ for a BVP. Except for quadratic functions the results will be slightly different. E.g. for the BVP $-u^{\prime \prime}(x)=\sin (x)$ the expression $\sin (x)$ can be given by $d(x)=\sin (x)$ and $f(x)=1$ or $d(x)=1$ and $f(x)=\sin (x)$.

[^7]1. For $d(x)=\sin (x)$ and $f(x)=1$ use the arguments $\mathrm{d}=@(\mathrm{x})$ sin $(\mathrm{x})$ and $\mathrm{f}=1$. With this description $\sin (x)$ will be evaluated at the Gauss points and then used for the RHS of the linear system. This is the approach preferred by this author.
2. For $d(x)=1$ and $f(x)=\sin (x)$ use the arguments $d=1$ and $f=@(x) \sin (\mathrm{x})$. With this description $\sin (x)$ will be evaluated at the nodes (end- and mid-points of the subintervals) and with a quadratic interpolation the values at the Gauss points will be determined and then used for the RHS of the linear system. This approach can be useful for iterative procedures.

- BCleft and BCright: with these parameters the boundary conditions are specified. If it is a single scalar Dirichlet conditions are used. If it is a vector of two scalars, Neumann conditions are used. E.g.
- BCleft $=3$ describes the boundary condition $u\left(x_{0}\right)=3$
- BCleft $=[3,-2]$ describes the boundary condition $a\left(x_{0}\right) u^{\prime}\left(x_{0}\right)=3-2 u\left(x_{0}\right)$

There are two return arguments:

- x is a vector with the coordinates of the nodes, i.e. all end- and mid-points of the subintervals.
- u is a vector with the values of the (approximate) solution $u(x)$ at the nodes.

Internally BVP1D () will call the function GenerateFEM1D () to approximate the solution of the boundary value problem by a linear system $\mathbf{A} \vec{u}=\mathbf{M} \vec{f}$. The code in BVP1D () implements the different boundary conditions.

## BVP1D()

```
[X,U] = BVP1D(INTERVAL,A,B,C,D,F,BCLEFT,BCRIGHT)
solve a 1D boundary value probme (BVP)
-(a(x)*u'(x))' + b (x)*u'(x) + c(x)*u(x) = d(x)*f(x)
with boundary conditions at the two endpoints
 * Dirichlet: u(x) = g_D
 * Neumann: a (x) *u'(x) = g_N1 + g_N2*u(x)
parameters:
 * INTERVAL the discretized interval for the BVP
 * A constant, vector or function handle to evaluate a(x)
 * B constant, vector or function handle to evaluate b(x)
 * C constant, vector or function handle to evaluate c(x)
 * D constant, vector or function handle to evaluate d(x)
 * F constant, vector or function handle to evaluate f(x)
 * BCLEFT and BCRIGHT the two boundary conditions
 * for a Dirichlet condition specify a single value G_D
 * for a Neumann condition specify the values [G_N1,G_N2]
 return values
 * X the nodes in the given inteval
 * U the values of the solution at the nodes
```

The function GenerateFEM1D () is used by BVP1D(), IBVP1D() and I2BVP1D() to generate the matrices required to solve the BVP and IBVP.

```
GenerateFEM1D0
[A,M, XNEW] = GenerateFEM1D (X,A,B,C,D)
generate the matrices A and M to discretize the expression
-d/dx (a(x) d/dx u(x)) + b (x) *d/dx u(x) + c(x)*u(x) - d(x)*f(x)
by A*u - M*f
parameters:
 * A function handle to evaluate the coefficient a(x), vectorized
 * B function handle to evaluate the coefficient b(x), vectorized
```

```
 * C function handle to evaluate the coefficient c(x), vectorized
 * D function handle to evaluate the coefficient d(x), vectorized
return values
 * A matrix discretizing the expressions involving u(x)
 * M matrix discretizing the evalaution of d(x)*f(x)
 * XNEW vector with the grid points
for an elementary demo use "demo GenerateFEM1D"
```

BVP1D () will determine the values of the solution at the nodes. If more values are required use a piece-wise quadratic interpolation, i.e. the command pwquadinterp (). The values of the function and the first and second derivatives can be evaluated.

```
\
yi = pwquadinterp(xdata,ydata,xi) % evaluate the values of the function
[yi, yi_x, yi_xx] = pwquadinterp(xdata,ydata,xi)% evaluate first and second derivatives
Use the data (xdata,ydata) to determine a piecewise quadratic function
and then evaluate this function at the points xi.
With multiple return arguments derivatives are evaluated.
The function requires that:
 there are an odd number of data points,
 xdata and xi are both in increasing order,
 the xi values lie between xdata(1) and xdata(end).
```

The above command will evaluate at arbitrary points in the interval. If the values of the derivative are only required at the notes, use the command FEM1DEvaluateDu().

```
FEM1DEvaluateDu()
 DU = FEM1DEvaluateDu(X,U)
 evaluate the first derivative at the nodes x
 parameters:
 * X coordinates of the nodes, generated by BVP1D()
 * U values of the function at the nodes
 return values
 * DU the values of the derivative at the nodes
```

For some problems the locations of the Gauss points are required. Use the function FEM1DGaussPoints (). This function also returns matrices to interpolate the values of a function and its derivative at the Gauss points, using the values at the nodes. See Section 7.2 for the details, equation (70) interpolates the values of the function.

```
\square_FEM1DGaussPoints()
 [XGAUSS,NODES2GAUSSU,NODES2GAUSSDU] = FEM1DGaussPoints(X)
 determine the coordinates of the Gauss points and interpolation matrices
 parameters:
 * X coordinates of the nodes, generated by BVP1D()
 return values
 * XGAUSS coordinates of the Gauss points
 * NODES2GAUSSU matrix to evaluate u at the Gauss points
 * NODES2GAUSSDU matrix to evaluate u' at the Gauss points
```

The commands IBVP1D () and I2BVP1D () use the internal command GenerateWeight1D() to solve dynamic 1D problems.

```
[XNEW,W1MAT,W2MAT] = GenerateWeight1D(X,W1,W2)
generate the weight matrices W1MAT and W2MAT
parameters:
 * W1 constant, vector or function handle to evaluate the coefficient w1(x), vectorized
 * W2 (optional) constant, vector or function handle to evaluate the coefficient w2(x),
 vectorized
return values
 * XNEW vector with the grid points
 * W1MAT weight matrix discretizing W1
 * W2MAT (optional) weight matrix discretizing W2
```


### 4.9 Solving 1D dynamic problems of order 1, IBVP 1D ()

To solve a dynamic boundary value problem (9), i.e.

$$
w(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t)
$$

with boundary conditions as in (8)

$$
\begin{aligned}
u\left(x_{i}\right) & =g_{D} & & \text { Dirichlet } \\
a\left(x_{i}\right) u^{\prime}\left(x_{i}\right) & =g_{N 1}+g_{N 2} u\left(x_{i}\right) & & \text { Neumann }
\end{aligned}
$$

and an initial condition $u\left(x, t_{0}\right)=u_{0}(x)$ use the command IBVP1D ().
Most of the parameters for a call of

$$
[x, u, t]=\operatorname{IBVP} 1 D(\text { interval, w, a, b, c, d, f, BCleft, BCright, u0, t0, tend, steps, varargin) }
$$

are very similar to the above call of BVP1D ().

- w : is the coefficient function for the weight $w(x)$ and can be given as scalar value, vector of values at the Gauss points or function handle.
- f : this function can be given as constant scalar, as vector or as a vectorized function handle of the form $\mathrm{f}=@(\mathrm{x}, \mathrm{t})$. f will determine the values of the function $f(x, t)$ at the nodes, i.e. the end- and mid-points of the subintervals.
- u 0 : the initial value $u\left(x, t_{0}\right)=u_{0}(x)$, either as single scalar, vector of values at the nodes or a function handle.
- t0: tend: initial and end time.
- steps: number of steps to be taken by the time stepping algorithm.
- If steps $=\mathrm{n}$ is a single, positive integer, then $n$ steps will be taken and thus $n+1$ results returned, including the initial value $u_{0}(x)$.
- If steps $=$ [n nint] is a vector of two positive integers, then $n$ steps will be taken and thus $n+1$ results returned. In between the returned results nint additional steps will be performed, such that the time step $\Delta t$ will be smaller.

The length of one time step is given by $\Delta t=\frac{\text { tend-t } 0}{\mathrm{n} * \mathrm{nint}}$.

- With the optional argument the type of time stepping algorithm can be selected. Use the string "solver" as name for the option and a string for the name of the algorithm. Find information on these time steppers in Section 7.6, starting on page 177.
- "CN": the standard Crank-Nicolson algorithm. This is the default algorithm. It is consistent of order 2 and unconditionally stable, but not L-stable.
- "implicit": the standard implicit solver. It is consistent of order 1, unconditionally stable and L-stable.
- "explicit": the standard explicit solver. It is consistent of order 1 , only conditionally stable and certainly not L-stable. It is not recommended to use this solver on real problems. If instabilities are very likely to show up, FEMoct ave issues a warning message. It can be used to demonstrate the effect of conditional stability, see page 177.
- "RK": an implicit Runge-Kutta algorithm. It is consistent of order 2, unconditionally stable and L-stable. The computational effort is larger than for the other algorithms, but still small for 1D problems.

There are three return arguments:

- x is a vector with coordinates of the nodes, i.e. all end- and mid-points of the subintervals.
- u is a matrix with the values of the (approximate) solutions $u(x)$ at the nodes. The first column contains the initial values. Each column contains the values for one time, given in the return argument $t$.
- $t$ is a vector with the times at which the values are returned in $u$.

Internally IBVP1D () will call the function GenerateFEM1D () to approximate the solution of the initial boundary value problem by a linear system of ordinary differential equations $\mathbf{W} \frac{d}{d t} \vec{u}(t)+\mathbf{A} \vec{u}(t)=\mathbf{M} \vec{f}(t)$. The code in IBVP1D () implements the boundary conditions and the time steppers.

## IBVP1D()

```
[X,U,T] = IBVP1D(INTERVAL,W,A, B, C,D,F,BCLEFT,BCRIGHT,U0,T0,TEND,STEPS,OPTIONS)
solve a 1D initial boundary value problem (IBVP)
w(x)*d/dt u(x,t) - (a(x)*u'(x,t))' + b(x)*u'(x,t) + c(x)*u(x,t) = d(x)*f(x,t)
with initial condition u(x,t0) = u0(x) and boundary conditions at the two endpoints
 * Dirichlet: u(x,t) = g_D
 * Neumann: a(x)*u'(x,t) = g_N1 + g_N2*u(x)
parameters:
 * INTERVAL the discretized interval for the BVP
 * W constant, vector or function handle to evaluate w(x)
 * A constant, vector or function handle to evaluate a(x)
 * B constant, vector or function handle to evaluate b(x)
 * C constant, vector or function handle to evaluate c(x)
 * D constant, vector or function handle to evaluate d(x)
 * F constant, vector or function handle to evaluate the f(x)
 * BCLEFT and BCRIGHT the two boundary conditions
 * for a Dirichlet condition specify a single value G_D
 * for a Neumann condition specify the values [G_N1,G_N2]
 * UO constant, vector with the initial values at the nodes or a
 function handle to evaluate u(t0)
 * TO, TEND are the initial and final times
 * STEPS is a vector with one or two positive integers.
 * If STEPS = n, then n steps are taken and the n+1 results returned.
 * If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.
 * OPTIONS additional options, given as pairs name/value.
 Currently only the stepping algorithm can be selected as "SOLVER"
 and the possible values
 * "CN" the standard Crank-Nicolson (default)
 * "IMPLICIT" the standard implicit solver
 * "EXPLICIT" the standard explicit solver
 * "RK" an L-stable, implicit Runge-Kutta solver
return values
 * X the nodes in the given interval
 * U is a matrix with n+1 columns with the values of the solution at
 the nodes at different times T
 * T is the vector with the values of the times at which the solutions are returned.
```


### 4.10 Solving 1D dynamic problems of order 2, I2BVP 1D ()

To solve a dynamic boundary value problem (10), i.e.

$$
w_{2}(x) \frac{\partial^{2}}{\partial t^{2}} u(x, t)+w_{1}(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t)
$$

again with Dirichlet or Neumann boundary conditions and an initial value $u\left(x, t_{0}\right)=u_{0}(x)$ and initial velocity $\left.\frac{\partial}{\partial t} u(x, t) 0\right)=$ $u_{1}(x)$ use the command I2BVP1D (). The syntax is similar to the above IBVP1D (). The only essential difference is the specification of the initial velocity $u_{1}(x)$. As time stepper select either the unconditionally stable implicit solver or the conditionally stable explicit solver. Both are consistent of order 2 .

I2BVP1D()

```
[X,U,T] = I2BVP1D(INTERVAL,W1,A,B, C,D,F,BCLEFT,BCRIGHT,U0,U1,T0,TEND,STEPS,OPTIONS)
solve a second order 1D initial boundary value problem (IBVP)
w2 (x)*d^2/dt^2 u(x,t) + w1 (x)*d/dt u(x,t) - (a(x)*u'(x,t))' +
 b (x)*u'(x,t) + C (x)*u(x,t) = d(x)*f(x,t)
with initial condition u(x,t0) = u0(x) and d/dt u(x,t0) = ul and
boundary conditions at the two endpoints
 * Dirichlet: u(x,t) = g_D
 * Neumann: a (x)*u'(x,t) = g_N1 + g_N2*u(x)
```

parameters:

* INTERVAL the discretized interval for the BVP
* W2 constant, vector or function handle to evaluate w2 (x)
* W1 constant, vector or function handle to evaluate w1 (x)
* A constant, vector or function handle to evaluate a(x)
* B constant, vector or function handle to evaluate b(x)
* C constant, vector or function handle to evaluate $C(x)$
* $D$ constant, vector or function handle to evaluate $d(x)$
* $F$ constant, vector or function handle to evaluate the $f(x, t)$
* BCLEFT and BCRIGHT the two boundary conditions
* for a Dirichlet condition specify a single value G_D
* for a Neumann condition specify the values [G_N1,G_N2]
* UO constant, vector with the initial values at the nodes or a function handle to evaluate u(t0)
* U1 constant, vector with the initial velocitiesat the nodes or a function handle to evaluate u(t0)
* T0, TEND are the initial and final times
* STEPS is a vector with one or two positive integers.
* If STEPS $=n$, then $n$ steps are taken and the $n+1$ results returned.
* If $S T E P S=[n, n i n t]$, then $n *$ nint steps are taken and ( $n+1$ ) results returned.
* OPTIONS additional options, given as pairs name/value. Currently only the stepping algorithm can be selected as "SOLVER" and the possible values
* "IMPLICIT" the standard implicit solver (default)
* "EXPLICIT" the standard explicit solver
return values
* X the nodes in the given interval
* U is a matrix with $\mathrm{n}+1$ columns with the values of the solution at the nodes at different times $T$
* $T$ is the vector with the values of the times at which the solutions are returned.


### 4.11 Solving 1D eigenvalue problems: BVP1Deig ()

To solve an 1D eigenvalue problem of the form (11)

$$
\begin{array}{rlrl}
-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x) & & =\lambda w(x) u(x) & \\
\text { for } x_{0}<x<x_{n} \\
u\left(x_{i}\right) & =0 & & \text { Dirichlet BC } \\
a\left(x_{i}\right) u^{\prime}\left(x_{i}\right) & & g_{N 2} u\left(x_{i}\right) & \\
\text { Neumann BC }
\end{array}
$$

use

where the coefficient functions can be given as described in Section 4.8, as constants, vectors or function handles. There are (possibly) two additional arguments

- The integer parameter nVec indicates the number of smallest eigenvalues to be be computed.
- The optional parameter tol will lead to the iteration stopping if the relative change from one step to the next is smaller than tol. If the parameter is not given, then a default value of $t \circ l=10^{-5}$ is used.

The function can be called with two ( $\mathrm{x}, \mathrm{Eval}$ ) or three ( $[\mathrm{x}, \mathrm{Eval}, \mathrm{Evev}]$ ) return arguments. A possible fourth return argument ([x, Eval, Evec, errorbound]) is of limited use, since with newer versions of FEMoctave eigs () is used, instead of an inverse power iteration.

- The first argument x contains the nodes at which the solutions are evaluated.
- The second return value eVal is a column vector containing the estimated values of the eigenvalues $\lambda_{i}$.
- If the third return value eVec is asked for, then a matrix will be returned. Each column contains the values of a normalized eigenfunction at the nodes.
- The fourth return argument errorbound is similar to the command BVP2Deig () (Section 4.5, page 65).

Examples of 1D eigenvalue problem are given in Section 3.2 and 9.16.

```
 BVP1Deig()
 [X,EVAL,EVEC,ERRORBOUND] = BVP1Deig(INTERVAL,A,B,C,W,BCLEFT,BCRIGHT,NVEC,TOL)
 determine the smallest eigenvalues EVAL and eigenfunctions EVEC for the BVP
 -(a(x)*u'(x))' + b (x)*u'(x) + C (x)*u(x) = eVal*w(x)*u(x)
 u = 0 on Dirichlet boundary
 a*u' = g_N2*u on Neumann boundary
 parameters:
 * INTERVAL the discretized interval for the BVP
 * A constant, vector or function handle to evaluate a(x)
 * B constant, vector or function handle to evaluate b(x)
 * C constant, vector or function handle to evaluate c(x)
 * W constant, vector or function handle to evaluate d(x)
 * BCLEFT and BCRIGHT the two boundary conditions
 * for a Dirichlet condition specify a single value G_D
 * for a Neumann condition specify the values [G_N1,G_N2]
 * NVEC the number of smallest eigenvalues to be computed
 * TOL optional tolerance for the eigenvalue iteration, default 1e-5
 return values
 * X the nodes in the given interval
 * EVAL the eigenvalues of the solution at the nodes
 * EVEC the matric of eigenvectors of the solutions at the nodes
 * ERRORBOUND a matrix with error bounds of the eigenvalues
```


### 4.12 Solving nonlinear 1D boundary value problems: BVP 1DNL ()

Search for solutions of nonlinear boundary value problems given in equation (13)

$$
-\left(a\left(x, u(x), u^{\prime}(x)\right) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=d(x) f\left(x, u(x), u^{\prime}(x)\right)
$$

with linear Dirichlet of Neumann boundary conditions.

- For the dependence on the function $f$ Newton's method is used, based on the linear Taylor approximation

$$
f\left(x, u+\phi, u^{\prime}+\phi^{\prime}\right) \approx f\left(x, u, u^{\prime}\right)+\frac{\partial f}{\partial u} \phi+\frac{\partial f}{\partial u^{\prime}} \phi^{\prime}
$$

- If the coefficient $a$ depends on $u$ or $u^{\prime}$ a partial substitution method is used.
- If $a$ and $f$ are nonlinear, a combination of Newton and substitution is used. The basic idea is spelled out in Algorithm 1. Find more details in Section 7.8.

```
Algorithm 1: The algorithm of BVP1DNL()
 evaluate \(a_{n}=a\left(x, u_{0}(x), u_{0}^{\prime}(x)\right)\) and \(f_{0}=f\left(x, u_{0}(x), u_{0}^{\prime}(x)\right)\)
 solve \(-\left(a_{n} u_{n}^{\prime}\right)^{\prime}+b u_{n}^{\prime}+c u_{n}=f_{0}\)
 repeat
 set \(u_{\text {old }}=u_{n}\)
 evaluate \(f_{n}=f\left(x, u_{n}(x), u_{n}^{\prime}(x)\right), f_{u}=\frac{\partial}{\partial u} f\left(x, u_{n}(x), u_{n}^{\prime}(x)\right)\) and \(f_{u^{\prime}}=\frac{\partial}{\partial u^{\prime}} f\left(x, u_{n}(x), u^{\prime}(x)\right)\)
 evaluate the coefficients \(b_{n}=b-d f_{u}\) and \(c_{n}=c-d f_{u^{\prime}}\)
 solve \(-\left(a_{n} \phi^{\prime}\right)^{\prime}+b_{n} \phi^{\prime}+c_{n} \phi=+\left(a_{n} u_{n}^{\prime}\right)^{\prime}-b_{n} u_{n}^{\prime}-c_{n} u_{n}+d f_{n}\)
 set \(u_{n}=u_{n}+\phi\), i.e. one Newton step
 evaluate \(a_{n}=a\left(x, u_{n}(x), u_{n}^{\prime}(x)\right)\) and \(f_{n}=f\left(x, u_{n}(x), u_{n}^{\prime}(x)\right)\)
 solve \(\left(a_{n} u_{n}^{\prime}\right)^{\prime}+b u_{n}^{\prime}+c u_{n}=d f_{n}\), i.e one substitution step
 until RMS of \(u_{\text {old }}-u_{n}\) small enough or too many iterations;
 return the results
```


## BVP1DNL()

$[\mathrm{X}, \mathrm{U}]=$ BVP1DNL(INTERVAL, A, B, C, D, F, BCLEFT, BCRIGHT, U0, OPTIONS)
solve a nonlinear 1D boundary value problem (BVP)
$-\left(a\left(x, u, u^{\prime}\right) * u^{\prime}(x)\right)^{\prime}+b(x) * u u^{\prime}(x)+c(x) * u(x)=d(x) * f\left(x, u, u^{\prime}\right)$
with boundary conditions at the two endpoints

* Dirichlet: u(x) $=$ g_D
* Neumann: $a\left(x, u, u^{\prime}\right) * u^{\prime}(x)=g \_N 1+g \_N 2 * u(x)$
parameters:
* INTERVAL the discretized interval for the BVP
* A constant, vector or function handle to evaluate $a(x), a(x, u)$ or $a\left(x, u, u u^{\prime}\right)$ at the Gauss points.
* A a constant or vector of values of $a(x)$.
* $A=@(X)$ a function handle to evaluate $f(x)$.
* $A=\{@(X, U), @(X, U)\}$ assumes that the function $a(x, u)$ depends on $x$ and $u$. The two function handles evaluate $a(x, u)$ and the partial derivative $a \_u(x, u)$.
* $A=\left\{@\left(X, U, U^{\prime}\right), @\left(X, U, U^{\prime}\right), @\left(X, U, U^{\prime}\right)\right\}$ assumes that $a\left(x, u, u^{\prime}\right)$ depends on $x, u$ and $u^{\prime}$. The three function handles evaluate $a\left(x, u, u^{\prime}\right)$ and the partial derivatives a_u(x,u,u') and a_u'(x,u,u').
* B constant, vector or function handle to evaluate $b(x)$ at Gauss points
* C constant, vector or function handle to evaluate $C(x)$ at Gauss points
* D constant, vector or function handle to evaluate $d(x)$ at Gauss points
* $F$ constant, vector or function handle to evaluate $f(x), f(x, u)$ or

```
\(f(x, u, u ')\) and the partial derivatives at nodes
* \(F\) a constant or vector of values of \(f(x)\) at the nodes.
* \(F=@(X)\) a function handle to evaluate \(f(x)\) at the nodes.
* \(F=\{@(X, U), @(X, U)\}\) assumes that the function \(f\) depends on \(x\) and \(u\). The two function handles evaluate \(f(x, u)\) and the partial derivative \(f\) _u(\(x, u)\).
* \(F=\left\{@\left(X, U, U^{\prime}\right), ~ @\left(X, U, U^{\prime}\right), ~ @\left(X, U, U^{\prime}\right)\right\}\) assumes that \(f\) depends on \(x, u\) and \(u^{\prime}\). The three function handles evaluate \(f\left(x, u, u^{\prime}\right)\) and the partial derivatives f_u(x,u,u') and f_u'(x,u,u').
* BCLEFT and BCRIGHT the two boundary conditions
* for a Dirichlet condition specify a single value G_D
* for a Neumann condition specify the values [G_N1,G_N2]
* UO constant, vector or function handle to evaluate u0(x) at the nodes.
This is the starting value for the iteration.
* OPTIONS additional options, given as pairs name/value.
* "TOL" the tolerance for the iteration to stop, given as pair [TOLREL, TOLABS] for the relative and absolute tolerance. The iteration stops if the absolute or relative error is smaller than the specified tolerance. RMS (root means square) values are used. If only TOLREL is specified TOLABS \(=\) TOLREL is used. The default values are TOLREL \(=\) TOLABS \(=1 \mathrm{E}-5\).
* "MAXITER" the maximal number of iterations to be used. The default value is 10.
* "DISPLAY" should information be displayed for the iterations
* "OFF" no display, default
* "ITER" display the number of the iteration and the RMS size of the update
return values
* X the nodes in the given interval
* U the values of the solution at the nodes
* INFORM a structure with information on the performance of the algorithm
* INFORM.INFO = 1 if the algorithm converged with the desired tolerance, -1 if not.
* INFORM.ITER the number of iterations used.
* INFORM.ABSERROR the RMS value of the last correction applied.
```


### 4.13 Solving dynamic nonlinear 1D boundary value problems: IBVP 1DNL ()

Search for solutions of nonlinear boundary value problems given in equation (14)

$$
w(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t, u(x, t))
$$

with linear boundary conditions, Dirichlet or Neumann and a given initial condition $u(x, 0)=u_{0}(x)$.

- As time stepper a Crank-Nicolson scheme is used.
- For each time step a nonlinear equation has to be solved. A standard Newton method is used, based on

$$
f(x, t,, u+\phi) \approx f(x, t, u)+\frac{\partial f}{\partial u} \phi
$$

## IBVP1DNL()

$[\mathrm{X}, \mathrm{U}, \mathrm{T}]=$ IBVP1DNL (INTERVAL, W, A, B, C, D, F, BCLEFT, BCRIGHT, U0, T0, TEND, STEPS, OPTIONS)
solve a 1D initial boundary value problem (IBVP)
$w(x) * d / d t u(x, t)-\left(a(x) * u^{\prime}(x, t)\right)^{\prime}+b(x) * u^{\prime}(x, t)+c(x) * u(x, t)=d(x) * f(x, t, u(x, t))$
with initial condition $u(x, t 0)=u 0(x)$ and boundary conditions at the two endpoints

* Dirichlet: $u(x, t)=g \_D$
* Neumann: $a(x) * u u^{\prime}(x, t)=g \_N 1+g \_N 2 * u(x)$
parameters:
* INTERVAL the discretized interval for the BVP
* W constant, vector or function handle to evaluate w(x)
* A constant, vector or function handle to evaluate a(x)
* B constant, vector or function handle to evaluate b(x)
* C constant, vector or function handle to evaluate $C(x)$
* $D$ constant, vector or function handle to evaluate $d(x)$
* F a structure $\mathrm{F}=\{@(\mathrm{X}, \mathrm{T}, \mathrm{U})$, @(X,T,U)\}. The two function handles evaluate $f(x, t, u)$ and the partial derivative $f \_u(x, t, u)$.
* BCLEFT and BCRIGHT the two boundary conditions
* for a Dirichlet condition specify a single value G_D
* for a Neumann condition specify the values [G_N1,G_N2]
* UO constant or vector with the initial values at the nodes or a function handle to evaluate $u(x, t 0)$
* TO, TEND are the initial and final times
* STEPS is a vector with one or two positive integers.
* If STEPS $=n$, then $n$ steps are taken and the $\mathrm{n}+1$ results returned.
* If STEPS $=$ [ $n$, nint], then $n *$ nint steps are taken and ( $n+1$ ) results returned.
* OPTIONS additional options, given as pairs name/value.
* "TOL" the tolerance for the iteration at each time step to stop, given as pair [TOLREL,TOLABS] for the relative and absolute tolerance. The iteration stops if the absolute or relative error is smaller than the specified tolerance. RMS (root means square) values are used. If only TOLREL is specified TOLABS=TOLREL is used. The default values are TOLREL $=$ TOLABS $=1 \mathrm{E}-5$.
* "MAXITER" the maximal number of iterations to be used. The default value is 10.
return values
* X the nodes in the given interval
* $U$ is a matrix with $n+1$ columns with the values of the solution at the nodes at times $T$
* T is the vector with the values of the times at which the solutions are returned.


### 4.14 Plane elasticity problems

For a plane stress problem the total energy (22) is

$$
\begin{aligned}
U(\vec{u})= & \iint_{\Omega} \frac{1}{2} \frac{E}{\left(1-\nu^{2}\right)}\left\langle\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 2(1-\nu)
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle d A- \\
& -\iint_{\Omega} \vec{f} \cdot \vec{u} d A-\int_{\Gamma_{2}} \vec{g}_{N} \cdot \vec{u} d s,
\end{aligned}
$$

respecting the boundary conditions (15)

$$
\begin{aligned}
\vec{u} & =\vec{g}_{D} & & \text { on Dirichlet boundary } \Gamma_{1}, \text { i.e. prescibed displacement } \\
\text { force density } & =\vec{g}_{N} & & \text { on Neumann boundary } \Gamma_{2}, \text { i.e. prescibed force density } \\
\text { force density } & =\overrightarrow{0} & & \text { on free boundary } \Gamma_{3}
\end{aligned}
$$

The corresponding Euler-Lagrange equations are shown in (23).
For a plane strain problem the total energy in expression (28)

$$
\begin{aligned}
U(\vec{u})= & U_{\text {elast }}+U_{\text {Vol }}+U_{\text {Surf }} \\
= & \iint_{\Omega} \frac{1}{2} \frac{E}{(1+\nu)(1-2 \nu)}\left\langle\left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & 2(1-2 \nu)
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle d A- \\
& -\iint_{\Omega} \vec{f} \cdot \vec{u} d A-\int_{\Gamma_{2}} \vec{g}_{N} \cdot \vec{u} d s
\end{aligned}
$$

$$
\begin{aligned}
= & \iint_{\Omega} \frac{1}{2} \frac{E}{\left(1-\left(\nu^{\star}\right)^{2}\right)}\left\langle\left[\begin{array}{ccc}
1 & \nu^{\star} & 0 \\
\nu^{\star} & 1 & 0 \\
0 & 0 & 2\left(1-\nu^{\star}\right)
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle d A- \\
& -\iint_{\Omega} \vec{f} \cdot \vec{u} d A-\int_{\Gamma_{2}} \vec{g}_{N} \cdot \vec{u} d s .
\end{aligned}
$$

is minimized, again respecting the boundary conditions (15). Thus the resulting Euler-Lagrange equations are very similar to (23), but with $E^{\star}$ and $\nu^{\star}$, given in (27) by

$$
\nu^{\star}=\frac{\nu}{1-\nu}>\nu \quad \text { and } \quad E^{\star}=\frac{E}{1-\nu^{2}}>E .
$$

4.14.1 Solving plane stress and plane strain problems: PlaneStress(), PlaneStrain()

To solve a plane stress problem use the command PlaneStress ().

## PlaneStress()

$$
\begin{aligned}
& \text { [U1, U2] = PlaneStress (MESH, E, NU, F, GD, GN) } \\
& \text { solve an plane stress problem } \\
& \begin{aligned}
\text { plane stress equation } & \text { in domain } \\
u=g D & \text { on Gamma_1 } \\
\text { force density }=g N & \text { on Gamma_2 } \\
\text { force density }=0 & \text { on Gamma_3 }
\end{aligned}
\end{aligned}
$$

parameters:

* MESH is the mesh describing the domain and the boundary types
* E,NU Young's modulus and Poisson's ratio for the material
* $F=\{F 1, F 2\}$ a cell array with the two components of the volume forces
* $G D=\{G D 1, G D 2\}$ a cell array with the two components of the prescribed displacements on the boundary section Gamma_1
* GN $=\{$ GN1, GN2 $\}$ a cell array with the two components of the surface forces on the boundary section Gamma_2
* Any constant function can be given by its scalar value
* Any function can be given by a string with the function name
* The functions E, NU, F1 and F2 may also be given as vectors with the values of the function at the Gauss points
return values
* U1 vector with the values of the $x$-displacement at the nodes
* U2 vector with the values of the $y$-displacement at the nodes

The code for PlaneStrain() is almost identical to PlaneStress ().

## PlaneStrain()

```
[U1,U2] = PlaneStrain(MESH,E,NU,F,GD,GN)
 solve an plane strain problem
 plane strain equation in domain
 u = gD on Gamma_1
 force density = gN on Gamma_2
 force density = 0 on Gamma_3
 parameters:
 * MESH is the mesh describing the domain and the boundary types
 * E,NU Young's modulus and Poisson's ratio for the material
 * F = {F1,F2} a cell array with the two components of the volume forces
 * GD = {GD1,GD2} a cell array with the two components of the
 prescribed displacements on the boundary section Gamma_1
```

* $\mathrm{GN}=\{\mathrm{GN} 1, \mathrm{GN} 2\}$ a cell array with the two components of the surface forces on the boundary section Gamma_2
* Any constant function can be given by its scalar value
* Any function can be given by a string with the function name
* The functions E, NU, F1 and F2 may also be given as vectors with the values of the function at the Gauss points
return values
* U1 vector with the values of the $x$-displacement at the nodes
* U2 vector with the values of the $y$-displacement at the nodes
4.14.2 Eigenvalue problems, PlaneStressEig(), PlaneStrainEig()

For a domain $\Omega$ and material parameter $E, \nu$ and the density $\rho$ the eigenvalue problem (25)

$$
\begin{aligned}
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}}{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}\right)=\lambda \rho u_{1} \\
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}{\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}}\right)=\lambda \rho u_{2}
\end{aligned}
$$

is examined by the command PlaneStressEig().

## PlaneStressEig()

```
[LA, U1,U2] = PlaneStressEig(MESH,E,NU,W,NVEC,TOL)
solve a plane stress eigenvalue problem
 A*u = la*w*u in domain, plane stress equation
 u = 0 on Gamma_1
 force density = 0 on Gamma_2
 force density = 0 on Gamma_3
parameters:
 * MESH is the mesh describing the domain and the boundary types
 * E,NU Young's modulus and Poisson's ratio for the material
 * W the material density
 * Any constant function can be given by its scalar value
 * Any function can be given by a string with the function name
 * The functions E, NU and W may also be given as vectors
 with the values of the function at the Gauss points
 * NVEC the number of smallest eigenvalues to be determined
 * TOL optional tolerance for for the eigenvalue iteration, default le-5
return values
 * LA the eigenvalues
 * U1 matrix with the values of the x-displacement at the nodes
 * U2 matrix with the values of the y-displacement at the nodes
```

Examples are given in Sections 3.10.3, 5.12, 5.14, 9.37 and 9.38 .

The command PlaneStrainEig() is very similar. The only difference is the usage of the plane strain assumption.
4.14.3 Dynamic elasticity problems, PlaneStressDynamic (), PlaneStrainDynamic ()

To solve a dynamic plain stress problem (24) use the command PlaneStressDynamic ().

## PlaneStressDynamic()

```
[U1,U2,T] = PlaneStressDynamic(MESH,E,NU,RHO,F,GD,GN,U0,V0,T0,TEND,STEPS,OPTIONS)
solve a dynamic plane stress problem
parameters:
 * MESH is the mesh describing the domain and the boundary types
 * E,NU Young's modulus and Poisson's ratio for the material
 * RHO,the density of the material
 * F = {F1,F2} a cell array with the two components of the volume forces.
 The functions take two arguments, coordinates xy and time t,
 i.e. of the form F1(XY,T).
 * GD = {GD1,GD2} a cell array with the two components of the prescribed
 displacements on the boundary section Gamma_1
 * GN = {GN1,GN2} a cell array with the two components of the surface forces on
 the boundary section Gamma_2
 * UO, VO the initial displacement and initial velocity.
 * Any constant function can be given by its scalar value
 * Any function can be given by a string with the function name
 * The functions E, NU and RHO may also be given as vectors with the values of
 the function at the Gauss points
 * The functions F1, F2, U0 and V0 may also be given as vectors with the values
 of the function at the nodes
 * TO, TEND are the initial and final times
 * STEPS is a vector with one or two positive integers.
 * If STEPS = n, then n steps are taken and the n+1 results returned.
 * If STEPS = [n,nint], then n*nint steps are taken and (n+1) results returned.
 * OPTIONS additional options, given as pairs name/value.
 Currently only the time stepping algorithm can be selected as "SOLVER" and the
 possible values
 * "IMPLICIT" an implicit solver (default)
 * "EXPLICIT" the standard explicit solver
return values
 * U1, U2 matrices with the values of the x- and y-displacements at the nodes.
 Matrices with n+1 columns with the values of the solution at the nodes
 at different times T
 * T vector with the n+1 values of the times at which the solutions are returned.
```

To solve a dynamic plane strain problem use the command PlaneStrainDynamic (). The code is a wrapper of the plane stress function, adapting to the modified material parameters

$$
E \rightarrow E^{\star}=\frac{E}{1-\nu^{2}} \geq E \quad \text { and } \quad \nu \rightarrow \nu^{\star}=\frac{\nu}{1-\nu} \geq \nu
$$

You can as well call PlaneStressDynamic () with the modified parameters.
Examples are given in Sections 3.10.3 and 9.41.

### 4.14.4 Evaluating plane stress and plane strain solutions

In Table 8 find the commands related to solving plane elasticity problems and analyzing their solutions. The functions EvaluateStress(), EvaluateStrain(), EvaluateVonMises(), EvaluateTresca() and EvaluatePrincipalSt determine the values at the nodes of the mesh. Thus for many applications these function have to be followed by a call of FEMgriddata () to evaluate at arbitrary points.

Observe that the two computational paths

1. Evaluate the partial derivative $\frac{\partial u_{1}}{\partial x}$ by a piecewise interpolation of the values of $u_{1}$ at the nodes. This is used by the command FEMgriddata() with 2 or 3 return arguments.
2. Evaluate the normal strain $\varepsilon_{x x}$ at the nodes, followed by a piecewise interpolation to determine the value at the arbitrary point $(x, y)$. This is used by the command EvaluateStrain () to determine the values at the nodes.
will NOT generate identical results. The difference should be small, but can be substantial, in particular for first order elements.
3. The value of eps_xx_1 is evaluated using the values of $u_{1}$ at the nodes and then a piecewise linear or quadratic interpolation leads to the value of the partial derivative $\frac{\partial u_{1}}{\partial x}$ at the point $(x, y)$.
4. The second option eps_xx_2 will first find values of the strain $\varepsilon_{x x}$ at the nodes, by taking an average of the partial derivatives $\frac{\partial u_{1}}{\partial x}$ at the node in the different triangles touching the node. Then a piecewise linear or quadratic interpolation of the values of $\varepsilon_{x x}$ at the nodes is used to estimate $\varepsilon_{x x}=\frac{\partial u_{1}}{\partial x}$ at the point $(x, y)$.
```
[~,eps_xx_1,~] = FEMgriddata(FEMmesh,u1,x,y)
[eps_xx,eps_yy,tau_xy] = EvaluateStrain (FEMmesh, u1,u2);
 eps_xx_2 = FEMgriddata(FEMmesh,eps_xx, x,y)
```

| command | purpose |
| :--- | :--- |
| PlaneStress() | solve a plane stress problem |
| PlaneStrain() | solve a plane strain problem |
| PlaneStressEig() | solve a plane stress eigenvalue problem |
| PlaneStrainEig() | solve a plane strain eigenvalue problem |
| PlaneStressDynamic() | solve a dynamic plane stress problem |
| PlaneStrainDynamic() | solve a dynamic plane strain problem |
| PStressEquationM() | generate plane stress equations, order 1 |
| PStressEquationQuadM() | generate plane stress equations, order 2 |
| PStressEquationCubicM() | generate plane stress equations, order 3 |
| PStressEquationwM() | generate matrices for plane stress, eigen and dynamic, order 1 |
| PStressEquationQuadWM() | generate matrices for plane stress, eigen and dynamic, order 2 |
| PStressEquationCubicWM() | generate matrices for plane stress, eigen and dynamic, order 3 |
| ShowDeformation() | display the original and deformed domain |
| EvaluateStrain() | given the displacement evaluate the strains at the nodes |
| EvaluateStress() | given the displacement evaluate the stresses at the nodes |
| EvaluateVonMises() | evaluate the von Mises stress at the nodes |
| EvaluatePrincipalStress() | evaluate the three principal stresses at the nodes |
| EvaluateTresca() | evaluate the Tresca stress at the nodes |
| EvaluateEnergyDensity() | evaluate the energy density at the nodes |

Table 8: Commands to solve and examine plane elasticity problems

### 4.14.5 Displaying the deformed domain, ShowDeformation ()

With the command ShowDeformation() the original and deformed domain are displayed.
$\square$ ShowDeformation(MESH, U1, U2, FACTOR)
display the original domain and the deformed domain

```
parameters:
 * MESH is the mesh describing the domain
 * U1 vector with the values of the x-displacements at the nodes
 * U2 vector with the values of the y-displacements at the nodes
 * FACTOR is the scaling factor for the displacements U1 and U2
```


### 4.14.6 Evaluation of basic strain and stress: EvaluateStrain(), EvaluateStress()

Given the displacements $\vec{u}_{1}$ and $\vec{u}_{2}$ with the corresponding mesh use the function EvaluateStrain() to determine the normal and shearing strains at the nodes of the mesh. The same function can be used for plane stress and plane strain problems. The missing normal strain $\varepsilon_{z z}$ in $z$-direction can be determined independently.

- For a plane stress setup use $\varepsilon_{z z}=\frac{-\nu}{1-\nu}\left(\varepsilon_{x x}+\varepsilon_{y y}\right)$.
- For a plane strain setup the assumption is $\varepsilon_{z z}=0$.

```
\square_ EvaluateStrain()
[EPS_XX,EPS_YY,EPS_XY] = EvaluateStrain(MESH,U1,U2)
 evaluate the normal and shearing strains at the nodes
 parameters:
 * MESH is the mesh describing the domain
 * U1 vector with the values of the x-displacements at the nodes
 * U2 vector with the values of the y-displacements at the nodes
 return values:
 * EPS_XX values of normal strain in x direction at the nodes
 * EPS_YY values of normal strain in y direction at the nodes
 * EPS_XY values of shearing strain at the nodes
```

Given the displacements $\vec{u}_{1}$ and $\vec{u}_{2}$ with the corresponding mesh use the function EvaluateStress () to determine the normal and shearing stresses at the nodes. Since Hooke's law is used to determine the stresses the material parameters $E$ and $\nu$ have to be provided. Use the same function for plane stress and plane strain problems, but with different arguments.

- For a plane stress setup ask for three return arguments $\sigma_{x}, \sigma_{y}$ and $\tau_{x y}$. All other components of the stress tensor are zero, based on the plane stress assumption.
- For a plane strain setup ask for four return arguments $\sigma_{x}, \sigma_{y}, \tau_{x y}$ and $\sigma_{z}$. Based on Hooke's law the other shearing stresses are given by $\tau_{x z}=\tau_{y z}=0$.

```
\square_ EvaluateStress()
 [SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z] = EvaluateStresS(MESH,U1,U2,E,NU)
 evaluate the normal and shearing stresses at the nodes, using
 Hooke's law for plane stress or plane strain setups
 * [SIGMA_X,SIGMA_Y,TAU_XY] = EvaluateStress(MESH,U1,U2,E,NU)
 with three return arguments assumes a plane stress situation
 * [SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z] = EvaluateStresS(MESH,U1,U2,E,NU)
 with four return arguments assumes a plane strain situation
 parameters:
 * MESH is the mesh describing the domain
 * U1 vector with the values of the x-displacements at the nodes
 * U2 vector with the values of the y-displacements at the nodes
 * E Young's modulus of elasticity, either as constant or as
 string with the function name
 * NU Young's modulus of elasticity, either as constant of as
```

```
 string with the function name
return values:
 * SIGMA_X values of normal stress in x direction at the nodes
 * SIGMA_Y values of normal stress in y direction at the nodes
 * TAU_XY values of shearing strain at the nodes
 * SIGMA_Z values of normal stress in z direction at the nodes,
 only for plane strain situations
```

4.14.7 Evaluation of stress expressions: EvaluateVonMises (), EvaluatePrincipalStress () and EvaluateTresca

There are many expressions used for post processing elasticity problems. The following commands allow to evaluate a few of them at the nodes of the given mesh.

The von Mises stress $\sigma_{M}$ is useful as an indicator for material failure for ductile materials, e.g. most metals. It is one of the most common output expressions used for mechanical FEM simulations. It is a measure for the differences of the principals stresses, since

$$
\sigma_{M}^{2}=\frac{1}{2}\left(\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right)
$$

- For a plane stress setup use $\sigma_{z}=\tau_{x z}=\tau_{y z}=0$ to simplify the expression for the von Mises stress.

$$
\begin{aligned}
\sigma_{M}^{2} & =\frac{1}{2}\left(\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{x}\right)^{2}\right)+3\left(\tau_{x y}^{2}+\tau_{y z}^{2}+\tau_{z x}^{2}\right) \\
& =\frac{1}{2}\left(\left(\sigma_{x}-\sigma_{y}\right)^{2}+\sigma_{y}^{2}+\sigma_{x}^{2}\right)+3 \tau_{x y}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}-\sigma_{y} \sigma_{x}^{2}+3 \tau_{x y}^{2}
\end{aligned}
$$

- For a plane strain setup use $\tau_{x z}=\tau_{y z}=0$ to simplify the expression for the von Mises stress slightly.

$$
\sigma_{M}^{2}=\frac{1}{2}\left(\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{x}\right)^{2}\right)+3 \tau_{x y}^{2}
$$

Select the plane stress or plane strain setup by calling the function EvaluateVonMises () with three or four input arguments.

- If the three arguments $\sigma_{x}, \sigma_{y}$ and $\tau_{x y}$ are given, then a plane stress situation is used.
- If the four arguments $\sigma_{x}, \sigma_{y}, \tau_{x y}$ and $\sigma_{z}$ are given, then a plane strain situation is used.


## EvaluateVonMises()

```
VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)
evaluate the von Mises stress at the nodes
 * VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY)
 with three input arguments assumes a plane stress situation
 * VONMISES = EvaluateVonMises(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)
 with four input arguments assumes a plane strain situation
 parameters:
 * SIGMA_X values of normal stress in x direction at the nodes
 * SIGMA_Y values of normal stress in y direction at the nodes
 * TAU_XY values of shearing strain at the nodes
 * SIGMA_Z values of normal stress in z direction at the nodes,
 only for plane strain situations
 return values:
 * VONMISES values of the von Mises stress at the nodes
```

By selecting an appropriate (local) coordinate system the shearing stresses will vanish and only the three principal stresses $\sigma_{1}, \sigma_{2}$ and $\sigma_{3}$ are used. They are the eigenvalues of the stress matrix

$$
\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{x y} & \sigma_{y} & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & \sigma_{z}
\end{array}\right]
$$

- For a plane stress problem determine the principal stresses $\sigma_{1}$ and $\sigma_{2}$ by solving a quadratic equation.

$$
\begin{aligned}
0 & =\operatorname{det}\left[\begin{array}{cc}
\sigma_{x}-\sigma & \tau_{x y} \\
\tau_{x y} & \sigma_{y}-\sigma
\end{array}\right]=\sigma^{2}-\sigma\left(\sigma_{x}+\sigma_{y}\right)+\sigma_{x} \sigma_{y}-\tau_{x y}^{2} \\
\sigma_{1,2} & =\frac{1}{2}\left(\left(\sigma_{x}+\sigma_{y}\right) \pm \sqrt{\left(\sigma_{x}+\sigma_{y}\right)^{2}-4 \sigma_{x} \sigma_{y}+4 \tau_{x y}^{2}}\right) \\
& =\frac{1}{2}\left(\left(\sigma_{x}+\sigma_{y}\right) \pm \sqrt{\left(\sigma_{x}-\sigma_{y}\right)^{2}+4 \tau_{x y}^{2}}\right)
\end{aligned}
$$

For a plane stress problem the third principal stress is given by $\sigma_{3}=0$.

- For a plane strain setup the first two of the above principal stresses remain unchanged. The values of $\sigma_{3}$ are determined by

$$
\sigma_{3}=\sigma_{z}=\frac{E \nu\left(\varepsilon_{x x}+\varepsilon_{y y}\right)}{(1+\nu)(1-2 \nu)}=\nu\left(\sigma_{1}+\sigma_{2}\right)=\nu\left(\sigma_{x}+\sigma_{y}\right) .
$$

and returned by the function EvaluateStress().
Thus there is no need for code to compute the values of $\sigma_{3}$.
EvaluatePrincipalStress()
[SIGMA_1,SIGMA_2] = EvaluatePrincipalStress (SIGMA_X,SIGMA_Y,TAU_XY)
evaluate the first two principal stresses at the nodes

```
parameters:
 * SIGMA_X values of normal stress in x direction at the nodes
 * SIGMA_Y values of normal stress in y direction at the nodes
 * TAU_XY values of shearing strain at the nodes
return values:
 * SIGMA_1 first principal stress at the nodes
 * SIGMA_2 second principal stress at the nodes
```

The Tresca stress is another indicator for material failure for ductile materials. The Tresca stress measures the differences of the principal stresses and is given by

$$
\sigma_{T}=\max \left\{\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|,\left|\sigma_{3}-\sigma_{1}\right|\right\}
$$

Select the plane stress or plane strain setup by calling the function EvaluateTresca() with three or four input arguments.

- If the three input arguments $\sigma_{x}, \sigma_{y}$ and $\tau_{x y}$ are given, then a plane stress situation is used.
- If the four input arguments $\sigma_{x}, \sigma_{y}, \tau_{x y}$ and $\sigma_{z}$ are given, then a plane strain situation is used.

```
 EvaluateTresca()
 TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)
 evaluate the Tresca stress at the nodes
 * TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY)
 with three input arguments assumes a plane stress situation
```

```
* TRESCA = EvaluateTresca(SIGMA_X,SIGMA_Y,TAU_XY,SIGMA_Z)
 with four input arguments assumes a plane strain situation
parameters:
 * SIGMA_X values of normal stress in x direction at the nodes
 * SIGMA_Y values of normal stress in y direction at the nodes
 * TAU_XY values of shearing strain at the nodes
 * SIGMA_Z values of normal stress in z direction at the nodes,
 only for plane strain situations
 return values:
 * TRESCA Tresca stress at the nodes
```

4.14.8 Evaluation of the energy density, EvaluateEnergyDensity()


### 4.15 Solving axisymmetric elasticity problems, AxiStress ()

By minimizing the energy given by equation (29) on page 19 an axisymmetric elasticity problem can be solved. The construction of the elements is shown in Section 8.7 starting on page 194. The commands to solve axially symmetric problems and analyze their solutions are shown in Table 9.

### 4.15.1 Evaluating axisymmetric solutions

To determine the radial displacement $u_{r}$ and the $z$-displacement $u_{z}$ use the command AxiStress ().

```
[UR,UZ] = AxiStress(MESH,E,NU,F,GD,GN)
solve an axisymmetric elasticity problem
plane stress equation in domain
 u = gD on Gamma_1
 force density = gN on Gamma_2
 force density = 0 on Gamma_3
 parameters:
 * MESH is the mesh describing the domain and the boundary types
 * E,NU Young's modulus and Poisson's ratio for the material
 * F = {F1,F2} a cell array with the two components of the volume forces
 * GD = {GD1,GD2} a cell array with the two components of the
 prescribed displacements on the boundary section Gamma_1
 * GN = {GN1,GN2} a cell array with the two components of the
```

surface forces on the boundary section Gamma_2

* Any constant function can be given by its scalar value
* Any function can be given by a string with the function name
* The functions E, NU, F1 and F2 may also be given as vectors with the values of the function at the Gauss points
return values
* UR vector with the values of the r-displacement at the nodes
* UZ vector with the values of the $z$-displacement at the nodes

| command | purpose |
| :--- | :--- |
| AxiStress() | solve an axially symmetric elasticity problem |
| AxiStressEquationM() | generate the equations, elements of order 1 |
| AxiStressEquationQuadM() | generate the equations, elements of order 2 |
| AxiStressEquationCubicM() | generate the equations, elements of order 3 |
| EvaluateStrainAxi() | given the displacement evaluate the strains at the nodes |
| EvaluateStressAxi() |  |
| EvaluateVonMisesAxi() | given the displacement evaluate the stresses at the nodes <br> evaluate the von Mises stress at the nodes |
| EvaluateTrescaAxi() | evaluate the three principal stresses at the nodes |
| EvaluateEnergyDensityAxi() | evaluate the Tresca stress at the nodes |

Table 9: Commands to solve and examine axially symmetric elasticity problems

### 4.15.2 Evaluation of strains and stress for axisymmetric problems

Based on Section 2.15 the strains for an axisymmetric problem with displacements $u_{r}(r, z)$ and $u_{z}(r, z)$ in the plane $y=0$ are given by

$$
\left[\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{x y} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial u_{r}}{\partial r} & 0 & \frac{1}{2}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) \\
0 & \frac{1}{r} u_{r} & 0 \\
\frac{1}{2}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) & 0 & \frac{\partial u_{z}}{\partial z}
\end{array}\right]
$$

Using Hooke's law this leads to the stresses

$$
\begin{aligned}
\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z}
\end{array}\right) & =\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1-\nu & \nu & \nu \\
\nu & 1-\nu & \nu \\
\nu & \nu & 1-\nu
\end{array}\right] \cdot\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z}
\end{array}\right) \\
& =\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1-\nu & \nu & \nu \\
\nu & 1-\nu & \nu \\
\nu & \nu & 1-\nu
\end{array}\right] \cdot\left(\begin{array}{c}
\frac{\partial u_{r}}{\partial r} \\
\frac{1}{r} u_{r} \\
\frac{\partial u_{z}}{\partial z}
\end{array}\right) \\
\tau_{z x} & =\frac{E}{1+\nu} \frac{1}{2}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right)
\end{aligned}
$$

Based on this the stresses and strains for axisymmetric problems can be evaluated. The codes are similar to the corresponding codes for plane elasticity problems, see Section 4.14 .4 starting on page 80.

## EvaluateStrainAxi()

[EPS_XX,EPS_YY,EPS_ZZ,EPS_XZ] = EvaluateStrainAxi (MESH, UR,UZ)
evaluate the normal and shearing strains at the nodes

## parameters:

* MESH is the mesh describing the domain
* UR vector with the values of the r-displacements at the nodes
* UZ vector with the values of the $z$-displacements at the nodes return values:
* EPS_XX values of normal strain in $x$ direction at the nodes
* EPS_YY values of normal strain in y direction at the nodes
* EPS_ZZ values of normal strain in $z$ direction at the nodes
* EPS_XZ values of shearing strain at the nodes



## - $\square$ EvaluateVonMisesAxi()

VONMISES = EvaluateVonMisesAxi (SIGMA_X,SIGMA_Y, SIGMA_Z,TAU_XZ) evaluate the von Mises stress at the nodes
parameters:

* SIGMA_X values of normal stress in $x$ direction at the nodes
* SIGMA_Y values of normal stress in y direction at the nodes
* SIGMA_Z values of normal stress in z direction at the nodes
* TAU_XZ values of shearing strain at the nodes return values:
* VONMISES values of the von Mises stress at the nodes
- Based on the stress matrix

$$
\left[\begin{array}{ccc}
\sigma_{x} & 0 & \tau_{x z} \\
0 & \sigma_{y} & 0 \\
\tau_{x z} & 0 & \sigma_{z}
\end{array}\right]
$$

two principal stresses are given by solving a quadratic equation.

$$
\begin{aligned}
0 & =\operatorname{det}\left[\begin{array}{cc}
\sigma_{x}-\sigma & \tau_{x z} \\
\tau_{x z} & \sigma_{z}-\sigma
\end{array}\right]=\sigma^{2}-\sigma\left(\sigma_{x}+\sigma_{z}\right)+\sigma_{x} \sigma_{z}-\tau_{x z}^{2} \\
\sigma_{1,2} & =\frac{1}{2}\left(\left(\sigma_{x}+\sigma_{z}\right) \pm \sqrt{\left(\sigma_{x}+\sigma_{z}\right)^{2}-4 \sigma_{x} \sigma_{z}+4 \tau_{x z}^{2}}\right) \\
& =\frac{1}{2}\left(\left(\sigma_{x}+\sigma_{z}\right) \pm \sqrt{\left(\sigma_{x}-\sigma_{z}\right)^{2}+4 \tau_{x z}^{2}}\right)
\end{aligned}
$$

The third principal stress is given by $\sigma_{3}=\sigma_{y}$.

| [SIGMA_1,SIGMA_2] $=$ EvaluatePrincipalStressAxi (SIGMA_X,SIGMA_Z,TAU_XZ) <br> evaluate two principal stresses at the nodes <br> parameters: <br> $\quad$ * SIGMA_X values of normal stress in $x$ direction at the nodes <br> $\quad$ * SIGMA_Z values of normal stress in z direction at the nodes <br> $\quad$ * TAU_XZ values of shearing strain at the nodes <br> return values: <br> $\quad$ * SIGMA_1 first principal stress at the nodes <br> $\quad$ * SIGMA_2 second principal stress at the nodes |
| :--- |


| aluateTrescaAxi |
| :---: |
| ```TRESCA = EvaluateTrescaAxi(SIGMA_X,SIGMA_Y,SIGMA_Z,TAU_XZ) evaluate the Tresca stress at the nodes parameters: * SIGMA_X values of normal stress in x direction at the nodes * SIGMA_Y values of normal stress in y direction at the nodes * SIGMA_Z values of normal stress in z direction at the nodes * TAU_XZ values of shearing strain at the nodes return values: * TRESCA Tresca stress at the nodes``` |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

4.15.3 Evaluation of the energy density, EvaluateEnergyDensityAxi()

```
 EvaluateEnergyDensityAxi()
 W = EvaluateEnergyDensityAxi (MESH,EPS_XX,EPS_YY,EPS_ZZ,EPS_XZ,E,NU)
 evaluate the energy density at the nodes for an axially symmetric setup
 parameters:
 * MESH is the mesh describing the domain
 * EPS_XX, EPS_YY, EPS_ZZ, EPS_XZ vectors with the values of the strains at the nodes
 * E Young's modulus of elasticity, either as constant or as string with the function name
 * NU Poisson's ratio, either as constant or as string with the function name
 return value:
 * \(W\) values of the energy density at the nodes
```


### 4.16 Internal commands in FEMoctave

In this section a few internal commands are documented. Usually these commands are not used when solving boundary value problems or elasticity problems. But the contain the essential codes to generate the matrices and vectors required to solve the problems. The coding is based on the algorithms shown in Section 6, starting on page 132. They can also be useful to illustrate the essential steps of finite element algorithms, e.g. individual element stiffness matrices.

### 4.16.1 Linear elements: FEMEquation. cc and FEMEquation.m

This is the fundamental function that transforms a BVP to a system of linear equations. First order triangular elements are used. To speed it up it is written in C++, leading to the file FEMEquation. oct.

```
[A,B] = FEMEquation (MESH,A,B0,BX,BY,F,GD,GN1, GN2)
sets up the system of linear equations for a numerical solution of
a PDE using a triangular mesh with elements of order 1
 -div(a*grad u - u*(bx,by))+b0*u = f in domain
 u = gD on Dirichlet boundary
 n*(a*grad u - u*(bx,by)) = gN1+g2N*u on Neumann boundary
parameters:
 * MESH triangular mesh of order 1 describing the domain and the
 boundary types
 * A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
 describing the PDE.
 Any constant function can be given by its scalar value.
 The functions A,B0,BX,BY and F may also be given as vectors
 with the values of the function at the Gauss points.
return values:
 * A, B: matrix and vector for the linear system to be solved, A*u-B=0
```

The script function FEMEquation.m perfoms the same task and is easier to read and understand, but considerably slower than the compiled code.
4.16.2 Quadratic elements: FEMEquationQuad.cc and FEMEquationQuad.m

This is the fundamental function that transforms a BVP to a system of linear equations. Second order triangular elements are used. To speed it up it is written in C++.

## FEMEquationQuad()

```
[A,B] = FEMEquationQuad (MESH,A,B0,BX,BY,F,GD,GN1,GN2)
 sets up the system of linear equations for a numerical solution of
 a PDE using a triangular mesh with elements of order 2
 -div(a*grad u - u*(bx,by))+ b0*u = f in domain
 u = gD on Dirichlet boundary
 n*(a*grad u - u* (bx,by)) = gN1+g2N*u on Neumann boundary
 parameters:
 * MESH triangular mesh of order 2 describing the domain and the
 boundary types
 * A,B0,BX,BY,F,GD,GN1,GN2 are the coefficients and functions
 describing the PDE.
 Any constant function can be given by its scalar value.
 The functions A, B0,BX,BY and F may also be given as vectors
 with the values of the function at the Gauss points.
 return values:
 * A, B: matrix and vector for the linear system to be solved, A*u-B=0
```

The script function FEMEquationQuad.m performs the same task and is easier to read and understand, but considerably slower than the compiled code.
4.16.3 Cubic elements: FEMEquationCubic.cc and FEMEquationCubic.m

These two commands are very similar to the above section, but use triangular elements of order 3.

### 4.16.4 Effect of right hand side for dynamic problems: FEMInterpolWeight ()

For the time stepping in parabolic and hyperbolic problems many systems of linear equations have to be solved using the RHS $f(t, x, y)$ for different values of the time $t$. Thus a function to keep track of the influence of $f$ is useful, FEMInterpolWeight (). This function returns a sparse matrix wMat such that the RHS of the system to be solved is

## given by wMat $\vec{f}$.

```
 FEMInterpolWeight()
 WMAT = FEMInterpolWeight (FEMMESH,WFUNC)
 create the matrix to determine the contribution of w*f to a IBVP or BVP
 the contribution of w*f is the determined by wMat*f, where f is the
 vector with the values at the "free" nodes
\[
\begin{array}{rlrl}
-\operatorname{div}(\mathrm{a} * \mathrm{grad} \mathrm{u})+\mathrm{b} 0 * \mathrm{u} & =\mathrm{w} * \mathrm{f} & & \text { in domain } \\
u & =g \mathrm{~g} & & \text { on Dirichlet boundary } \\
\mathrm{n} *(\mathrm{a} * g r a d u) & =g N 1+g N 2 * u \text { on Neumann boundary }
\end{array}
\]
 parameters:
 * MESH is the mesh describing the domain and the boundary types
 * WFUNC is the weight function w
 It may be given as a function name, a vector with the values
 at the Gauss points or as a scalar value
 return value
 * WMAT is the sparse weight matrix
```

This function is used in IBVP2D(), I2BVP2D() and IBVP2Dsym().

### 4.16.5 Effect of the Dirichlet values: FEMInterpolBoundaryWeight ()

If the same system has to be solved for many different Dirichlet values $g D$ on the boundary, one can generate the equation once and the only recompute the changes for different gD.

```
FEMInterpolBoundaryWeight()
 WMAT = FEMInterpolBoundaryWeight (FEMMESH,A,B0)
 create the matrix to determine the contribution of gD to a IBVP or BVP
 the contribution of gD is the determined by wMat*gD, where gD is
 the vector with the values at the Dirichlet nodes
\begin{tabular}{rlrl}
\(-\operatorname{div}(a * g r a d u)+b 0 * u\) & \(=f\) & & in domain \\
\(u\) & \(=g D\) & & on Dirichlet boundary \\
\(n *(a * g r a d u)\) & \(=g N 1+g N 2 * u\) on Neumann boundary
\end{tabular}
 parameters:
 * FEMMESH is the mesh describing the domain and the boundary types.
 * A,B0 are the coefficients and functions describing the PDE.
 return value:
 * WMAT is the sparse weight matrix
```


### 4.16.6 Determine a few small eigenvalues: eigSmall ()

In the function BVP2Deig() a few small eigenvalues are determined with the help of the wrapper eigSmall () for the Octave function eigs (). Usually generalized eigenvalues are used in FEMoctave.
eigSmall()

```
[Lambda,{Ev,err}] = eigSmall(A,V,tol)
 solve A*Ev = Ev*diag(Lambda) standard eigenvalue problem
[Lambda,{Ev,err}] = eigSmall(A,B,V,tol)
 solve A*Ev = B*Ev*diag(Lambda) generalized eigenvalue problem
 A is a (sparse) mxm matrix
 B is a (sparse) mxm matrix
 V is either n, the number of desired eigenvalues
```

```
 or a mxn matrix, the initial eigenvectors for the iteration
tol is the relative error, used as the stopping criterion
X is a column vector with the eigenvalues
EV is a matrix whose columns represent normalized eigenvectors
err is a vector with the aposteriori error estimates for the eigenvalues
this implementation is based on using eigs()
```


### 4.16.7 Generating the equations for elasticity problems

The codes PStressEquationM.m, PStressEquationQuadM.m and PStressEquationCubicM.m generate the linear system of equations to be solved for plane stress and plane strain problems. They are used in PlaneStress () and PlaneStrain (). The Octave codes are based on the algorithms in Section 8 (starting on page 183) and easier to read and understand than $\mathrm{C}++$ code, which is not writte (yet).

## PStressEquationM.m

[gMat,gVec] = PStressEquationM(Mesh,EFunc, nuFunc,fFunc,gDFunc,gNFunc)
setup the equation for a plane stress problem with linear elements

```
PStressEquationQuadM.m
 [gMat,gVec] = PStressEquationQuadM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
 setup the equation for a plane stress problem with quadratic elements
```

L

## PStressEquationCubicM.m

    [gMat,gVec] = PStressEquationCubicM(Mesh,EFunc, nuFunc,fFunc,gDFunc, gNFunc)
    setup the equation for a plane stress problem with cubic elements
    A similar set of functions will generate the matrices for the elastic eigenvalue problmes. The codes are PStressEquat ionWM.m, PStressEquationQuadWM.m and PStressEquationcubicWM.m and they are used in PlaneStressEig() and PlaneStrainEig(). The same codeas are used to generate the matrices for the dynamic elasticity problmes, used in PlaneStressDynamic() and PlaneStrainDynamic().

For axially symmetric problems similar commands are used, i.e. the script files AxiStressEquationM.m, AxiStressEquat and AxiStressEquationCubicM.m.

```
 AxiStressEquationM.m
[gMat,gVec] = AxiStressEquationM(Mesh,EFunc,nuFunc,fFunc,gDFunc,gNFunc)
%% [gMat,gVec] = AxiStressEquationM(Mesh,EFunc, nuFunc,fFunc,gDFunc,gNFunc)
%%
%% setup the equation for an axisymmetric problem with linear elements
```


## AxiStressEquationQuadM.m

[gMat, gVec] = AxiStressEquationQuadM (Mesh, EFunc, nuFunc, fFunc, gDFunc, gNFunc)
\%\% [gMat,gVec] = AxiStressEquationQuadM(Mesh,EFunc, nuFunc,fFunc, gDFunc, gNFunc)
$\%$ \%
$\%$ setup the equation for an axisymmetric problem with quadratic elements

```
AxiStressEquationCubicM.m
[gMat,gVec] = AxiStressEquationCubicM (Mesh,EFunc, nuFunc,fFunc, gDFunc, gNFunc)
\% [gMat,gVec] = AxiStressEquationCubicM (Mesh, EFunc, nuFunc, fFunc, gDFunc, gNFunc)
응
\%\% setup the equation for an axisymmetric problem with cubic elements
```

These Octave codes might be replaced by a compiled code for speed reasons.

### 4.17 External programs

- Triangle To construct nonuniform triangular meshes FEMoctave uses an external program. The source code not distributed with FEMoctave, due to copyright worries. Find on the web at www.cs.cmu.edu/~quake/triangle.html. Here are instructions on how to install Triangle on a Linux system:
- Download the zip file at http://www.netlib.org/voronoi/triangle.zip. Create a directory triangle and copy the zip file in that directory.
- In that directory apply the following commands in a terminal.

```
unzip -t triangle.zip
make
sudo cp triangle /usr/local/bin/
```

$L$
Now triangle is available on your system and can be used by FEMoctave.

- CuthillMcKee to obtain a good numbering. Not necessary any more, since the sparse factorizations do a better job.
- tricountour.m is a code by Duane Hanselman available at the Mathworks web site matlabcentral. It was used by previous versions of the function FEMtricontour (). The current version of FEMoctave contains a simple implementation of tricontour.m. Neither code is able to generate good labels for the contours.


## 5 Tools for Didactical Purposes

In this section a few effects of FEM are illustrated. This could be useful to teach a class on the FEM.
5.1 The convergence of the solutions as $h \rightarrow 0$ is examined, using an example. Find the orders of convergence for linear, quadratic and cubic elements.
5.2 Some element stiffness matrices are examined. A path from FEM to a finite difference approximation is shown.
5.3 The behavior of FEM solutions within an element is examined. Find a visualization of the accuracy of linear, quadratics or cubic element.
5.4 The number of nodes, triangles and their effect on the sparsity of the global stiffness matrix is examined.
5.5 Elements of order 1, 2 or 3 are used to solve the same problem. The sizes of the resulting matrices and errors are examined.
5.6 A few examples illustrate the second order elements are not $C^{1}$-conforming, i.e. the first derivative might jump across borders of elements.
5.7 The effect of superconvergence is illustrated using a 1D boundary value problem.
5.8 The stability of four different time steppers for dynamic heat problems is visualized.
5.9 The stability condition for time steppers for the wave equation is illustrated.
5.10 The effect of shear-locking for elasticity problems, solved with the help of linear elements, is explained and visualized. It is shown why quadratic elements do not suffer from possible shear-locking.
5.11 The standard problem of a bending Euler beam is solved with elements of order 1,2 and 3 and on different meshes. The results are compared.
5.12 Eigenmodes of a slender bending beam are examined. The effect of different elements, mesh sizes and dimensions can be observed.
5.13 The effect of adding missing constraints for a heat and an elasticity problem is examined.
5.14 The (bad) effect of missing boundary constraints for elasticity problems is explained with the help of an example.

### 5.1 Observe the convergence of the error as $h \rightarrow 0$

Consider the unit square $\Omega=[0,1] \times[0,1]$. One can verify that the function $u_{e}(x, y)=\sin (x) \cdot \sin (y)$ is the exact solution of the boundary value problem

$$
\begin{aligned}
-\nabla \cdot \nabla u & =-2 \sin (x) \cdot \sin (y) & & \text { for } 0 \leq x, y \leq 1 \\
\frac{\partial u(x, 1)}{\partial y} & =-\sin (x) \cdot \cos (1) & & \text { for } 0 \leq x \leq 1 \quad \text { and } y=1 \\
u(x, y) & =u_{e}(x, y) & & \text { on the other sections of the boundary }
\end{aligned}
$$

Let $h>0$ be the typical length of a side of a triangle. For second order elements $2 h$ is used and for third order elements $3 h$, such that the computational effort is comparable to first order elements. Nonuniform meshes are used, to avoid superconvergence. By choosing different values of $h$ one should observe smaller errors for smaller values of $h$. The sizes of the matrices vary (approximately) from $50 \times 50$ to $58^{\prime} 000 \times 58^{\prime} 000$. The error is measured by computing the $L_{2}$ norms of the difference of the exact and approximate solutions, for the values of the functions and its partial derivative with respect to $y$. These are the expressions used in the theoretical convergence estimates stated in Section 6.7. A double logarithmic plot leads to Figure 38.

- For linear elements:
- The slope of the curve for the absolute values of $u(x, y)-u_{e}(x, y)$ is approximately 2 and thus conclude that the error is proportional to $h^{2}$.


Figure 38: Convergence results for linear, quadratic and cubic elements

- The slope of the curve for the absolute values of $\frac{\partial}{\partial y}\left(u(x, y)-u_{e}(x, y)\right)$ is approximately 1 and thus conclude that the error of the gradient is proportional to $h$.
- For quadratic elements:
- The slope of the curve for the absolute values of $u(x, y)-u_{e}(x, y)$ is approximately 3 and thus conclude that the error is proportional to $h^{3}$.
- The slope of the curve for the absolute values of $\frac{\partial}{\partial y}\left(u(x, y)-u_{e}(x, y)\right)$ is approximately 2 and thus conclude that the error of the gradient is proportional to $h^{2}$.
- For cubic elements:
- The slope of the curve for the absolute values of $u(x, y)-u_{e}(x, y)$ is approximately 4 and thus conclude that the error is proportional to $h^{4}$.
- The slope of the curve for the absolute values of $\frac{\partial}{\partial y}\left(u(x, y)-u_{e}(x, y)\right)$ is approximately 3 and thus conclude that the error of the gradient is proportional to $h^{3}$.

These observations confirm the theoretical error estimates in Section 6.7 on page 164. It is rather obvious from Figure 38 that higher order elements generate more accurate solutions for a comparable computational effort.

```
a = 1; b0 = 0; gN2 = 0; N = 6;
Npow = 6; % use Npow = 6 for final run
function res = u_exact(xy,dymmy) res = sin(xy(:,1)).*sin(xy(:,2)); endfunction
function res = f(xy,dummy) res = 2* *in(xy(:,1)).*sin(xy(:,2)); endfunction
function res = u_y(xy) res = sin(xy(:,1)).*cos(xy(:,2)); endfunction
for ii = 1:Npow
 Ni = N*2^(ii-1); h(ii) = 1/(Ni); area = 0.5/(Ni)^2;
 FEMmesh1 = CreateMeshTriangle('TestConvergence',[0 0 -1;1 0 -1;1 1 -2;0 1 -1],area);
 FEMmesh2 = CreateMeshTriangle('TestConvergence',[0 0 -1;1 0 -1;1 1 -2;0 1 -1],4*area);
 FEMmesh2 = MeshUpgrade(FEMmesh2,'quadratic');
```

```
 FEMmesh3 = CreateMeshTriangle('TestConvergence',[0 0 -1;1 0 -1;1 1 -2;0 1 -1],9*area);
 FEMmesh3 = MeshUpgrade(FEMmesh3,'cubic');
%%% solve with first order elements
 u1 = BVP2Dsym(FEMmesh1,a,b0,'f','u_exact','u_y',gN2);
 Difference(ii) = sqrt(FEMIntegrate(FEMmesh1,(u1-u_exact(FEMmesh1.nodes)).^2));
 [ux,uy] = FEMEvaluateGradient(FEMmesh1,u1);
 DifferenceUy(ii) = sqrt(FEMIntegrate(FEMmesh1,(uy-u_y(FEMmesh1.nodes)).^2));
%%% now for second order elements
 u2 = BVP2Dsym(FEMmesh2,a,b0,'f','u_exact','u_y',gN2);
 DifferenceQ(ii) = sqrt(FEMIntegrate(FEMmesh2, (u2-u_exact(FEMmesh2.nodes)).^2));
 [ux,uy] = FEMEvaluateGradient(FEMmesh2,u2);
 DifferenceUyQ(ii) = sqrt(FEMIntegrate(FEMmesh2,(uy-u_y(FEMmesh2.nodes)).^2));
%%% now for third order elements
 u3 = BVP2Dsym(FEMmesh3,a,b0,'f','u_exact','u_y',gN2);
 DifferenceC(ii) = sqrt(FEMIntegrate(FEMmesh3, (u3-u_exact(FEMmesh3.nodes)).^2));
 [ux,uy] = FEMEvaluateGradient(FEMmesh3,u3);
 DifferenceUyC(ii) = sqrt(FEMIntegrate(FEMmesh3,(uy-u_y(FEMmesh3.nodes)).^2));
endfor
figure(1); plot(log10(h),log10(Difference), '+-',log10(h),log10(DifferenceUy), '+-',
 log10(h), log10 (DifferenceQ),'+-',log10 (h) ,log10 (DifferenceUyQ),'+-',
 log10 (h) , log10 (DifferenceC) ,'+-', log10 (h),log10 (DifferenceUyC) ,'+-')
 xlabel('log_{10}(h)'); ylabel('log_{10} (difference)')
 legend('linear, u-u_e','linear, d/dy (u-u_e)',
 'quad, u-u_e','quad, d/dy (u-u_e)','cubic, u-u_e','cubic, d/dy (u-u_e)',
 'location','southeast'); xlim([-2.5,-0.5])
```


### 5.2 Some Element Stiffness Matrices

### 5.2.1 Element contributions for equilateral triangles

Generate the trivial mesh consisting of a single equilateral triangle with the help of CreateMeshTriangle (). The code in CreateTriangle.m generates the mesh and Figure 39.

## CreateTriangle.m

```
%% corners of an equilateral triangle
corners = 1*[0,0,-2;1,0,-2;0.5,sqrt(3)/2,-2];
mm = CreateMeshTriangle('one_triangle',corners,max(corners(:).^2))
plot([mm.nodes(:,1);mm.nodes(1,1)],[mm.nodes(:,2);mm.nodes (1, 2)],'o-r',
 mm.GP(:,1),mm.GP(:, 2),'b*')
xlabel('x'); ylabel('y'); title('triangle, with Gauss points'); axis equal
```

For the PDE $-\Delta u=1$ generate the element stiffness matrix $\mathbf{A}$ and the element vector $\vec{f}$ by using the command FEMEquation().

```
[A,f] = FEMEquation (mm, 1,0,0,0,1,0,0,0);
Element_Matrix = full(A)
Element_Vector = f
-->
Element_Matrix = }\begin{array}{rlrr}{0.57735}&{-0.28868}&{-0.28868}\\{-0.28868}&{0.57735}&{-0.28868}\\{}&{-0.28868}&{-0.28868}&{0.57735}
Element_Vector = -0.14434
 -0.14434
 -0.14434
```

This result corresponds to the exact result for the element stiffness matrix in Figure 39.

$$
\begin{aligned}
\mathbf{A} & =\frac{\sqrt{3}}{6}\left[\begin{array}{lll}
+2 & -1 & -1 \\
-1 & +2 & -1 \\
-1 & -1 & +2
\end{array}\right] \\
\vec{b} & =\frac{\sqrt{3}}{4 \cdot 3}\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)=\frac{\text { area of triangle }}{3}\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
\end{aligned}
$$



Figure 39: An linear, equilateral triangle, the Gauss integration points and the element stiffness matrix

Using the same idea one can examine the contributions of the different terms to the element stiffness matrix. As example consider the term caused by $b_{0} u=1 u$ in the PDE.

```
B = FEMEquation (mm, 0, 1,0,0,0,0,0,0);
B = full(B)
 -->
 B = 0.072169 0.036084 0.036084
 0.036084 0.072169 0.036084
 0.036084 0.036084 0.072169
```

The result confirms

$$
\mathbf{B}=\frac{\text { area of triangle }}{12}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Examine a mesh consisting of equilateral triangles, as shown in Figure 40. Then examine the linear equation corresponding to an interior point at $\left(x_{i}, y_{i}\right)$.


Figure 40: Uniform meshes consisting of equilateral triangles

- The node is corner of 6 triangles, thus the coefficient $a_{i, i}$ of the global stiffness matrix consists of 6 contributions found on the diagonal in the element stiffness matrix A in Figure 39, i.e. $a_{i, i}=6 \frac{+2}{2 \sqrt{3}}=\frac{6}{\sqrt{3}}$.
- If a node at $\left(x_{j}, y_{j}\right)$ shares two triangles with $\left(x_{i}, y_{i}\right)$ then the entry $a_{i, j}$ in the global stiffness matrix consists of 2 contributions found off the diagonal in the element stiffness matrix A in Figure 39, i.e. $a_{i, j}=2 \frac{-1}{2 \sqrt{3}}=\frac{-1}{\sqrt{3}}$.
- If the function $f$ in $-\nabla^{2} u=f$ is constant, then there will be 6 contributions from the six neighboring triangle. If the length of one side of a triangle equals $h$, then the area is $\frac{\sqrt{3}}{4} h^{2}$. Thus find $b_{i}=6 \frac{\text { area of triangle }}{3}(-f)=-\frac{\sqrt{3}}{2} h^{2} f$. As a result find the equation for the node at $\left(x_{i}, y_{i}\right)$.

$$
\begin{aligned}
\frac{1}{h^{2}}\left(\frac{6}{\sqrt{3}} u\left(x_{i}, y_{i}\right)-\frac{1}{\sqrt{3}} \sum_{\text {neigbours }} u\left(x_{j}, y_{j}\right)\right) & =+\frac{\sqrt{3}}{2} f \\
\frac{1}{h^{2}}\left(u\left(x_{i}, y_{i}\right)-\frac{1}{6} \sum_{\text {neigbours }} u\left(x_{j}, y_{j}\right)\right) & =+\frac{1}{4} f
\end{aligned}
$$

This is somewhat similar to a finite difference approximation. For each row of the global stiffness matrix the entry on the diagonal and 6 more will be different from 0 .

One can examine second order elements and the resulting element stiffness matrix and vector for quadratic elements for the PDE $-\Delta u=1$. The triangular, equilateral element and the matrix are shown in Figure 41. The vector is given by

$$
\mathbf{A}=\frac{\sqrt{3}}{18}\left[\begin{array}{cccccc}
6 & 1 & 1 & 0 & -4 & -4 \\
1 & 6 & 1 & -4 & 0 & -4 \\
1 & 1 & 6 & -4 & -4 & 0 \\
0 & -4 & -4 & 24 & -8 & -8 \\
-4 & 0 & -4 & -8 & 24 & -8 \\
-4 & -4 & 0 & -8 & -8 & 24
\end{array}\right]
$$



Figure 41: An equilateral, quadratic triangle, the Gauss integration points and the element stiffness matrix

$$
\vec{b}=\frac{\sqrt{3}}{4 \cdot 3}\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
-1
\end{array}\right)=\frac{\text { area of triangle }}{3}\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
-1
\end{array}\right)
$$

For the global stiffness matrix for the very regular mesh in Figure 40

- on each row of the matrix corresponding to a corner of the triangle the entry on the diagonal and 12 more will be different from 0 . If the mesh is not as regular even 19 entries on each row might be different from zero.
- on each row of the matrix corresponding to a midpoint of a side of the triangle the entry on the diagonal and 6 more will be different from 0 . If the mesh is not as regular even 9 entries on each row might be different from zero.


### 5.2.2 From FEM to a finite difference approximation

Generate the trivial mesh consisting of a single right triangle with the help of CeateMeshTriangle. The code in CreateTriangle generates the mesh and Figure 42. For the PDE $-\Delta u=1$ generate the element stiffness matrix $\mathbf{A}$ and the element vector $\vec{b}$ by using FEMEquation() or FEMEquationM().


$$
\mathbf{A}=\left[\begin{array}{ccc}
+1 & -0.5 & -0.5 \\
-0.5 & +1 & 0 \\
-0.5 & 0 & +1
\end{array}\right], \quad \vec{b}=\frac{1}{6}\left(\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right)
$$



Figure 42: A right triangle, the Gauss integration points and the element stiffness matrix

Based on elements of the above type there is a connection of FEM to the finite difference method. Generate a rectangular grid, shown in Figure 43. Examine the PDE $-\Delta u=\pi$ with Neumann boundary conditions. Use the command FEMEquation to generate the matrix $\mathbf{A}$ and the vector $\vec{b}$, then the linear equation $\mathbf{A} \vec{u}+\vec{b}$ has to be solved. The code displays the equation at node 5 .

```
x = [-1,0,1];
FEMmesh = CreateMeshRect (x,x,-2,-2,-2,-2)
figure(1); clf
ShowMesh (FEMmesh.nodes,FEMmesh.elem)
xlabel('x'); ylabel('y')
axis(1.2*[-1,1, -1,1]*max(x))
hold on
for kk = 1:length(FEMmesh.nodes)
 text (FEMmesh.nodes (kk,1)+0.02,FEMmesh.nodes(kk,2)-0.07,num2str (kk),'color', [1 0 0])
endfor
hold off
```



Figure 43: Uniform meshes consisting of rectangular triangles

```
a=1; b0=bx=by= 0; f=pi;
[A,b] = FEMEquation(FEMmesh,a,b0,bx,by,f,0,0,0);
A5 = full(A(5,:))
b5 = b(5)
-->
A5 = [llllllllllll
b5 = -3.1416
```

The results imply that the equation to be solved is

$$
-u_{2}-u_{4}+4 u_{5}-u_{6}-u_{8}=\pi
$$

Running the code again with $\mathrm{x}=[1,0,1] / 2$ will not change $\mathbf{A}$, but lead to $b_{5}=-\pi 4$. Thus for a width $h$ of the triangles the equation to be solved is

$$
\frac{-u(x-h, y)-u(x, y-h)+4 u(x, y)-u(x+h, y)-u(x, y+h)}{h^{2}}=f(x, y)
$$

This is the usual finite difference approximation of $-\Delta u=f$.
One can examine second order elements and the resulting element stiffness matrix and vector for quadratic elements for the PDE $-\Delta u=1$. The element and the matrix are shown in Figure 44. The vector is given by

$$
\vec{b}=\frac{1}{2 \cdot 3}\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
-1
\end{array}\right)=\frac{\text { area of triangle }}{3}\left(\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
-1
\end{array}\right) .
$$

### 5.2.3 Element stiffness matrices for 1D problems

To examine an ODE of the form (7)

$$
-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)+d(x) f(x)=0
$$

$$
\mathbf{A}=\frac{1}{6}\left[\begin{array}{cccccc}
6 & 1 & 1 & 0 & -4 & -4 \\
1 & 3 & 0 & 0 & 0 & -4 \\
1 & 0 & 3 & 0 & -4 & 0 \\
0 & 0 & 0 & 16 & -8 & -8 \\
-4 & 0 & -4 & -8 & 16 & 0 \\
-4 & -4 & 0 & -8 & 0 & 16
\end{array}\right]
$$



Figure 44: A right angle triangle, the Gauss integration points and the element stiffness matrix
with the help of FEM the element stiffness matrix for each subinterval has to be determined. In the case of constant coefficients the formulas from Section 7.2 (page 171) can be simplified, mainly to examine the structure of the matrices. Four contributions have to be taken into account. Use code similar to

```
 h = 1;
 [A,M,x] = GenerateFEM1D ([0 h],1,0,0,1);
 A = full(A)
 A_rat = rats (A*h)
 M = full (M)
M_rat = rats (M/h)
```

to determine the matrices. With the notations $u_{-}=u(-h / 2), u_{0}=u(0)$ and $u_{+}=u(+h / 2)$ obtain

$$
\begin{aligned}
& I_{2}=\int_{-h / 2}^{+h / 2} u^{\prime}(x) \phi^{\prime}(x) d r \approx\left\langle\frac{1}{3 h}\left[\begin{array}{ccc}
+7 & -8 & +1 \\
-8 & +16 & -8 \\
+1 & -8 & +7
\end{array}\right]\left(\begin{array}{c}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right),\left(\begin{array}{c}
\phi_{-} \\
\phi_{0} \\
\phi_{+}
\end{array}\right)\right\rangle=\left\langle\mathbf{A}_{2} \vec{u}, \vec{\phi}\right\rangle \\
& I_{1}=\int_{-h / 2}^{+h / 2} u^{\prime}(x) \phi(x) d x \approx\left\langle\frac{1}{6}\left[\begin{array}{ccc}
-3 & +4 & -1 \\
-4 & 0 & +4 \\
+1 & -4 & +3
\end{array}\right]\left(\begin{array}{c}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right),\left(\begin{array}{c}
\phi_{-} \\
\phi_{0} \\
\phi_{+}
\end{array}\right)\right\rangle=\left\langle\mathbf{A}_{1} \vec{u}, \vec{\phi}\right\rangle \\
& I_{0}=\int_{-h / 2}^{+h / 2} u(x) \phi(x) d x \approx\left\langle\frac{h}{30}\left[\begin{array}{ccc}
+4 & +2 & -1 \\
+2 & +16 & +2 \\
-1 & +2 & +4
\end{array}\right]\left(\begin{array}{c}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right),\left(\begin{array}{c}
\phi_{-} \\
\phi_{0} \\
\phi_{+}
\end{array}\right)\right\rangle=\left\langle\mathbf{A}_{0} \vec{u}, \vec{\phi}\right\rangle \\
& I_{f}=\int_{-h / 2}^{+h / 2} f(x) \phi(x) d x \approx\left\langle\frac{h}{30}\left[\begin{array}{ccc}
+4 & +2 & -1 \\
+2 & +16 & +2 \\
-1 & +2 & +4
\end{array}\right]\left(\begin{array}{c}
f_{-} \\
f_{0} \\
f_{+}
\end{array}\right),\left(\begin{array}{c}
\phi_{-} \\
\phi_{0} \\
\phi_{+}
\end{array}\right)\right\rangle=\left\langle\mathbf{M}_{e} \vec{f}, \vec{\phi}\right\rangle
\end{aligned}
$$

The contribution by one element to the linear system $\mathbf{A} \vec{u}=\mathbf{M} \vec{f}$ is

$$
\left(a \mathbf{A}_{2}+b \mathbf{A}_{1}+c \mathbf{A}_{0}\right) \vec{u} \quad \text { and } \quad \mathbf{M}_{e} \vec{f}
$$

As a very simple example examine the $\mathrm{ODE}-u^{\prime \prime}(x)=f$ on three intervals of length $h$. Use

$$
\mathbf{M}_{e}\left(\begin{array}{l}
f \\
f \\
f
\end{array}\right)=\frac{f}{6}\left(\begin{array}{l}
1 \\
4 \\
1
\end{array}\right)
$$

and the above element stiffnes matrix $\mathbf{A}_{2}$ to find the linear system

$$
\frac{1}{3 h}\left[\begin{array}{ccccccc}
+7 & -8 & +1 & & & & \\
-8 & +16 & -8 & & & & \\
+1 & -8 & +14 & -8 & +1 & & \\
& & -8 & +16 & -8 & & \\
& & +1 & -8 & +14 & -8 & +1 \\
& & & & -8 & +16 & -8 \\
& & & & +1 & -8 & +7
\end{array}\right]\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6}
\end{array}\right)=\frac{f h}{6}\left(\begin{array}{l}
1 \\
4 \\
2 \\
4 \\
2 \\
4 \\
1
\end{array}\right)
$$

- The matrix is symmetric and shows a semi-bandwidth of 3 , i.e. at most five entries in each row or column, around the diagonal.
- The above system of 7 equations does not have a unique solution. For a constant vector $\vec{u}=\overrightarrow{1}$ the matrix multiplication leads to the zero vector. This is caused by the missing boundary conditions. With the additional constraints $u_{0}=$ $u_{6}=0$ the system has a unique solution. In the above matrix the first and last rows and columns have to be removed.
- The second of the above equations is identical to the well known finite difference formula for the second derivative, i.e.

$$
\frac{-u_{0}+2 u_{1}+u_{2}}{(h / 2)^{2}}=f
$$

and similar for the fourth and sixth equation. The third equation

$$
\frac{u_{0}-8 u_{1}+14 u_{2}-8 u_{3}+u_{4}}{h^{2}}=f
$$

shows a five point approximation of the second derivative and similar for the fifth equation

### 5.2.4 Element stiffness matrices for elasticity problems

For the equilateral triangle in Figure 41 examine the symmetric element stiffness matrix for parameters $E=1$ and $\nu=0.3$ for linear elements.

$$
\mathbf{A}_{1} \approx\left[\begin{array}{cccccc}
0.531 & -0.420 & -0.111 & 0.179 & -0.014 & -0.165 \\
-0.420 & 0.531 & -0.111 & 0.014 & -0.179 & 0.165 \\
-0.111 & -0.111 & 0.222 & -0.192 & 0.192 & 0 \\
0.179 & 0.014 & -0.192 & 0.325 & -0.008 & -0.317 \\
-0.014 & -0.179 & 0.192 & -0.008 & 0.325 & -0.317 \\
-0.165 & 0.165 & 0 & -0.317 & -0.317 & 0.634
\end{array}\right]
$$

If the location of the corners of the triangle are slightly perturbed, then all entries are different from 0 . On a mesh similar to Figure 40 (but not as uniform) with $14^{\prime} 040$ degrees of freedom the number of nonzero entries in each row of the resulting matrix leads to the histogram in Figure 45(a). If each of the nodes would connect to 6 other nodes, then 14 nonzero entries per row are expected. The average observed on the examined mesh is 13.8 nonzeros in each row or column. Thus only $\approx 1 \%$ of the entries in the matrix are not zero, i.e. it is a very sparse matrix.


Figure 45: The number of nonzero entries in each row

For quadratic elements the $12 \times 12$ element stiffness matrix is given by

$$
\mathbf{A}_{2} \approx\left[\begin{array}{cccccccccccc}
0.53 & 0.14 & 0.04 & 0 & -0.15 & -0.56 & 0.18 & 0 & 0.05 & 0 & -0.22 & -0.02 \\
0.14 & 0.53 & 0.04 & -0.15 & 0 & -0.56 & 0 & -0.18 & -0.05 & 0.22 & 0 & 0.02 \\
0.04 & 0.04 & 0.22 & -0.15 & -0.15 & 0 & 0.06 & -0.06 & 0 & 0.26 & -0.26 & 0 \\
0 & -0.15 & -0.15 & 1.71 & -1.12 & -0.30 & 0 & 0.26 & 0.22 & 0 & 0 & -0.48 \\
-0.15 & 0 & -0.15 & -1.12 & 1.71 & -0.30 & -0.26 & 0 & -0.22 & 0 & 0 & 0.48 \\
-0.56 & -0.56 & 0 & -0.30 & -0.30 & 1.71 & 0.02 & -0.02 & 0 & -0.48 & 0.48 & 0 \\
0.18 & 0 & 0.06 & 0 & -0.26 & 0.02 & 0.33 & 0 & 0.11 & 0 & -0.42 & -0.01 \\
0 & -0.18 & -0.06 & 0.26 & 0 & -0.02 & 0 & 0.33 & 0.11 & -0.42 & 0 & -0.01 \\
0.05 & -0.05 & 0 & 0.22 & -0.22 & 0 & 0.11 & 0.11 & 0.63 & -0.42 & -0.42 & 0 \\
0 & 0.22 & 0.26 & 0 & 0 & -0.48 & 0 & -0.42 & -0.42 & 1.71 & -0.02 & -0.85 \\
-0.22 & 0 & -0.26 & 0 & 0 & 0.48 & -0.42 & -0.00 & -0.42 & -0.02 & 1.71 & -0.85 \\
-0.02 & 0.02 & 0.00 & -0.48 & 0.48 & -0.00 & -0.01 & -0.01 & -0.00 & -0.85 & -0.85 & 1.71
\end{array}\right]
$$

and for a slight perturbation of the corners again all 144 entries are different from zero. On a mesh similar to Figure 40 (but not as uniform) with $56^{\prime} 700$ degrees of freedom the number of nonzero entries in each row of the resulting matrix leads to the histogram in Figure 45 (b) with an average of 22.7 nozeros per row or column. For a corner of a triangle contacting 6 triangles expect $6 \cdot 6+2=38$ nonzero entries. For a midpoint of a triangle expect $2 \cdot 9=18$ nonzero entries. The midpoints outnumber the corners by a factor of three. Thus expect an average of $\frac{3 \cdot 18+38}{4}=23$ nonzero entries in each row of the matrix. Thus only $\approx 0.4 \%$ of the entries in the matrix are not zero, i.e. it is a very sparse matrix.

### 5.3 Behavior of a FEM solution within triangular elements

To examine the behavior of a solution within each of the triangular elements use the boundary value problem

$$
\begin{array}{rlrl}
-\Delta u & =-\exp (y) & \text { for } \quad(x, y) \in \Omega \\
u(x, y) & =\exp (y) & & \text { for } \quad(x, y) \in \Gamma
\end{array}
$$

on the domain $\Omega$ displayed in Figure 46(a). The exact solution is given by $u(x, y)=\exp (y)$, shown in Figure 46(b). The problem is solved twice:

1. using 32 triangular elements of order 1 .
2. using 8 triangular elements of order 2 .

The nodes used coincide for the two approaches, i.e four triangles in Figure 46(a) for the linear elements correspond to one of the eight triangles for the quadratic elements.


Figure 46: The mesh and the solution for a BVP

Figure 47(a) shows the difference of the computed solution with first order elements to the exact solution. Within each of the 32 elements the difference is not too far from a quadratic function. Figure 47(b) shows the values of the partial derivative $\frac{\partial u}{\partial y}$. It is clearly visible that the gradient is constant within each triangle, and not continuous across element borders.


Figure 47: Difference to the exact solution and values of $\frac{\partial u}{\partial y}$, using a first order mesh

Figure 48(a) shows the difference of the computed solution with second order elements to the exact solution. The error is considerably smaller than for linear elements, using identical degrees of freedom. Within each of the 8 elements the difference does not show a simple structure. Figure 48(b) shows the values of the partial derivative $\frac{\partial u}{\partial y}$. It is clearly visible that the gradient is not constant within the triangles. By a careful visual inspection one has to accept that the gradient is not continuous across element borders, but the jumps are considerably smaller than for linear elements. These elements are not $C^{1}$-conforming. Figure 49 shows the errors for the partial derivative $\frac{\partial u}{\partial y}$ and confirms this observation.

In Figure 50 find the differences of the values of the solution and the partial derivative with respect to $y$ for the same computation using cubic elements. Observe that the approximation errors are considerably smaller. The partial derivatives $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are not continuous across the limits of the triangles, since these third order elements are not $C^{1}$-conforming.


Figure 48: Difference to the exact solution and values of $\frac{\partial u}{\partial y}$, using a second order mesh


Figure 49: Difference of the approximate values of $\frac{\partial u}{\partial y}$ to the exact values


Figure 50: Difference of the approximate values of $u$ and $\frac{\partial u}{\partial y}$ to the exact values for cubic elements

```
N = 2; MeshType = 'quadratic' %% use 'linear', 'quadratic' or 'cubic'
Mesh = CreateMeshTriangle('test',[0 0 -1;1 0 -1;1 2 -1; 0 1 -1],1/N^2);
switch MeshType
 case 'quadratic'
 Mesh = MeshUpgrade(Mesh,'quadratic');
 case 'cubic'
 Mesh = MeshUpgrade(Mesh,'cubic');
endswitch
xi = linspace(0.2,1.1,5); yi = xi*0.8+0.05;
Ngrid = 100; [xi,yi] = meshgrid(linspace(0,1,Ngrid),linspace(0,2,Ngrid));
figure(1); FEMtrimesh(Mesh)
 xlabel('x'); ylabel('y'); xlim([-0.1,1.1]); ylim([-0.1,2.1])
function res = u_exact(xy) res = +exp(xy(:,2)) ; endfunction
function u = f(xy) u = - exp (xy(:,2)); endfunction
u_ex = reshape(u_exact([xi(:),yi(:)]),Ngrid,Ngrid);
u = BVP2Dsym(Mesh,1,0,'f','u_exact',0,0);
[ui,uxi,uyi] = FEMgriddata(Mesh,u,xi,yi);
figure(2); FEMtrimesh(Mesh,u); hold on
 plot3(xi,yi,ui,'g.'); hold off;
 xlabel('x'); ylabel('y'); title('u'); view([-60 25])
figure(3); mesh(xi,yi,uyi)
 xlabel('x'); ylabel('y'); title('u_y')
figure(4); mesh(xi,yi,uyi-u_ex)
 xlabel('x'); ylabel('y'); title('difference of u_y'); view([-110, 30])
```


### 5.4 Estimate the number of nodes and triangles in a mesh and the effect on the sparse matrix

Let $\Omega \subset \mathbb{R}^{2}$ be a domain with a triangular mesh with many triangles. There is a connection between

$$
N=\text { number of nodes and } T=\text { number of triangles. }
$$

Examine the typical mesh on the right and consider only triangles and nodes inside the mesh, as the number of contributions by the borders are considerably smaller for large meshes.

- each triangle has three corners
- each (internal) corner is touched by 6 triangles
- each triangle has 3 midpoints of edges and each of the midpoints is shared by 2 triangles

- For first order elements the nodes are the corners of the triangles.

$$
N \approx \frac{1}{6} T 3=\frac{1}{2} T
$$

Thus the number $N$ of nodes is approximately half the number $T$ of triangles.

- For second order elements the nodes are the corners of the triangles and the midpoints of the edges. Each midpoint is shared by two triangles.

$$
N \approx \frac{1}{2} T+\frac{3}{2} T=2 T
$$

Thus the number $N$ of nodes is approximately twice the number $T$ of triangles.

- For third order elements the nodes are the corners of the triangles, two points each edge and the central point. Each point on an edge is shared by two triangles.

$$
N \approx \frac{1}{2} T+\frac{2 \cdot 3}{2} T+T=\frac{9}{2} T
$$

Thus the number $N$ of nodes is approximately 4.5 times the number $T$ of triangles.
The above implies that the number of degrees of freedom to solve a problem with second or third order elements with a typical diameter $h$ of the triangles is approximately equal to using linear elements on triangles with diameter $h / 2$ (quadratic) or $h / 3$ (cubic).

The above estimates also allow to estimate how many entries in the sparse matrix resulting from an FEM algorithm will be different from zero.

- For linear elements each node typically touches 6 triangles and each of the involved corners is shared by two triangles. Thus there might be $6+1=7$ nonzero entries in each row of the matrix.
- For second order triangles distinguish between corners and midpoints.
- Each corner touches typically six triangles and thus expect up to $6 \times 3+1=19$ nonzero entries in the corresponding row of the matrix.
- Each midpoint touches two triangles and two of the corner points are shared. Thus expect up to $2+2 \times 3+1=9$ nonzero entries in the corresponding row of the matrix.
The midpoints outnumber the corners by a factor of three. Thus expect an average of $\frac{3 \cdot 9+19}{4}=11.5$ nonzero entries in each row of the matrix.
- For third order triangles distinguish between corners, points on edges and center points.
- Each corner touches typically six triangles and thus expect up to $6 \times 6+1=37$ nonzero entries in the corresponding row of the matrix.
- Each point on an edge touches two triangles and four points on the same edge are shared. Thus expect up to 16 nonzero entries in the corresponding row of the matrix.
- Each center point leads to 10 nonzero entries.

There are approximately $C$ corners points, $2 C$ midpoints and on the $3 C$ edges find $6 C$ points. Thus expect an average of $\frac{1 \cdot 37+6 \cdot 16+2 \cdot 10}{2+6+1}=\frac{153}{9}=17$ nonzero entries in each row of the matrix.

- The above estimates are not correct for equations with constant coefficients or horizontal or vertical edges. Then expect fewer nonzero entries in each row of the matrix.

This points to about a factor of $\frac{11.5}{7} \approx 1.6$ more nonzero entries in the matrix for quadratic elements for the same number of degrees of freedom. For cubic elements expect a factor of $\frac{17}{7} \approx 2.4$. This implies that the computational effort is larger, the actual effect depends on the linear solver used.

### 5.5 Compare linear, quadratic and cubic elements

To examine the performance of the different order elements examine the BVP

$$
\begin{aligned}
-\nabla\left(\left(1+x^{2}\right) \nabla u(x, y)\right) & =-4\left(1+x^{2}\right) \exp (-2 y) & & \text { for } \quad(x, y) \in \Omega \\
\frac{\partial u(y, 0)}{\partial x} & =0 & & \text { for } 1 \leq y \leq 2 \\
u(x, y) & =\exp (-2 y) & & \text { on other sections of the boundary }
\end{aligned}
$$

on the domain shown in Figure 51. The exact solution is given by $u_{e}(x, y)=\exp (-2 y)$. For different values of the typical


Figure 51: Meshes for linear, quadratic and cubic elements, leading to similar size linear systems to be solved.
element size $h$ for linear elements the three types of elements are used.

- For quadratic elements use $h_{\text {quad }}=2 h$ to aim for the same number of degrees of freedom, i.e. the same size of linear system of equations to be examined. For cubic elements $h_{\text {cubic }}=3 h$ is used. This leads to meshes shown in Figure 51. Observe that the mesh for cubic elements is not as good as the mesh for linear elements to approximate the deformed domain, caused by the larger elements.
- For each solution $u$ determine the $L_{2}$ error, i.e.

$$
\text { error }=\left(\iint_{\Omega}\left|u(x, y)-u_{e}(x, y)\right|^{2} d A\right)^{1 / 2}
$$

- For each setup determine the size $n \times n$ of the matrix $\mathbf{A}$ for the linear system to be solved.
- For each setup determine the number of nonzero entries in the sparse matrix $\mathbf{A}$ and then the average number of nonzeros in each row of $\mathbf{A}$.
- When different values $h_{1}$ and $h_{2}$ are used the expression the errors are expected to be proportional to $h^{k}$, with the order of convergence $k$. Thus if $h$ is replaced by $h / 2$ expect ratios of $2,4,8$ or 16 for the $L_{2}$ errors, according to the theoretical results shown in Section 6.7 on page 164.
- If $h$ is replaced by $h / 2$ expect the number of elements and the size of the matrix Ato be multiplied by 4 . The number of nonzero entries in each row should not change drastically.

The results in Table 10 confirm the theoretical estimates of the errors and the number of nonzero entries in the matrix $\mathbf{A}$.

| Element | linear |  | quadratic |  | cubic |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| width $h$ of elements | 0.025 | 0.0125 | 0.050 | 0.0250 | 0.075 | 0.0375 |
| number of elements | 3944 | 15912 | 998 | 3944 | 432 | 1764 |
| size $n$ of matrix | 1920 | 7850 | 1920 | 7850 | 1896 | 7842 |
| $L_{2}$ error | $2.2 \cdot 10^{-4}$ | $6.4 \cdot 10^{-5}$ | $1.8 \cdot 10^{-5}$ | $1.4 \cdot 10^{-6}$ | $8.4 \cdot 10^{-7}$ | $5.6 \cdot 10^{-8}$ |
| ratio of $L_{2}$ errors |  | $\approx 2.9$ |  | $\approx 4.7$ |  | $\approx 15$ |
| nonzeros per row | 6.8 | 6.9 | 11.0 | 11.2 | 16.1 | 16.6 |

Table 10: Results for elements of order 1, 2 and 3

### 5.6 Are second order elements C1 conforming?

The command BVP1D () uses second order elements to solve two-point boundary value problems. Since the values of the piecewise quadratic functions coincide at the limit of two neighboring subintervals the elements are $C^{0}$ conforming, i.e. the numerical solution is continuous. The "open" question is whether these elements are $C^{1}$ conforming, i.e. are first derivatives continuous?

This is illustrated by the code below and the resulting Figure 52. The BVP solved is

$$
-u^{\prime \prime}(x)=\operatorname{sign}(x) \quad \text { for } \quad-1<x<+1 \quad \text { and } \quad u(-1)=u(+1)=0
$$

One might expect special behavior at $x=0$.

- The approximate solution $\vec{u}$ is determined by calling BVP1D () .
- The derivative is evaluated
- by pwquadinterp () with a very high resolution.
- by FEM1DEvaluateDu() at the nodes.

Then both are plotted and no difference between the two is visible, i.e. the first derivative $u^{\prime}(x)$ seems to be continuous. Zooming in around $x \approx 0$ confirms the observation.

Observe: since $-u^{\prime \prime}(x)= \pm 1$ is solved by $\mp \frac{1}{2} x^{2}$ the exact solution $u_{\text {exact }}(x)$ of the above problem consists of two quadratic functions, patched together at $x=0$, in spite of the discontinous right hand side $\operatorname{sign}(x)$.

$$
u_{\text {exact }}(x)=\left\{\begin{array}{lll}
\frac{1}{2} x(1+x) & \text { for } & -1 \leq x \leq 0 \\
\frac{1}{2} x(1-x) & \text { for } \quad 0 \leq x \leq+1
\end{array}\right.
$$

The algorithm in BVP1D () is based on piecewise quadratic approximations and will thus generate the exact solution.

## Test_C1conforming.m

```
 n = 8; x = linspace (-1,1,n+1)';
 [x,u] = BVP1D (x,1,0,0,@(x) sign (x),1,0,0) ;
 figure(1); plot(x,u,'+-')
 xlabel('x'); ylabel('u')
 x_fine = linspace(-1,1,10001)'; [u_fine,du_fine] = pwquadinterp(x,u,x_fine);
 du = FEM1DEvaluateDu(x,u);
 figure(2); plot(x_fine,du_fine,x,du,'+')
 xlabel('x'); ylabel('du/dx'); legend('interpolated','at nodes')
```

As a second BVP examine

$$
-u^{\prime \prime}(x)+\operatorname{sign}(x-0.5) u^{\prime}(x)=1 \quad \text { for } \quad-1<x<+1 \quad \text { and } \quad u(-1)=u(+1)=0
$$

One might expect special behavior at $x=0.5$.


Figure 52: The solution and the first derivative, evaluated at the nodes and by interpolation

- The approximate solution $\vec{u}$ is determined by calling BVP1D ().
- The derivative is evaluated
- by pwquadinterp () with a very high resolution.
- by FEM1DEvaluateDu() at the nodes.

Then both are plotted and no difference between the two is visible in the full graph in Figure 53(a) i.e. the first derivative $u^{\prime}(x)$ seems to be continuous. Zooming in around $x \approx 0.5$ leads to Figure 53(b) and a jump of the first derivative at $x=0.5$ is visible.

- Since there is a node at $x=0.5$ the code in pwquadinterp () returns the values of $u^{\prime}(x)$ for the subinterval to the left of $x=0.5$, and then jumps to the values on the right subinterval. FEM1DEvaluateDu () returns the average value of the slopes of $u(x)$ to the left and right of $x=0.5$. This is visible in Figure 53(b).
- The size of the jump of $u^{\prime}(x)$ is smaller if more elements are used, e.g. by $\mathrm{n}=2 \star 8$.

The consequence: second order element are not $C^{1}$ conforming. For 2D FEM algorithms the same is correct, visualized by Figure 48 on page 104.


Figure 53: The first derivative, complete graph and zoomed in at $x=0.5$

## Test_C1conforming.m

```
 n = 8; x = linspace(-1,1,n+1)';
 [x,u] = BVP1D(x,1,@(x)sign(x-0.5),0,1,1,0,0);
 figure(1); plot(x,u)
 xlabel('x'); ylabel('u')
 x_fine = linspace(-1,1,10001)'; [u_fine,du_fine] = pwquadinterp(x,u,x_fine);
 du = FEM1DEvaluateDu(x,u);
 figure(2); plot(x_fine,du_fine,x,du,'+')
 xlabel('x'); ylabel('du/dx'); legend('interpolated','at nodes')
```

The above example might lead to the suspicion that the jump in the first derivative is caused by the noncontinuous coefficient $\operatorname{sign}(x-0.5)$ of $u^{\prime}(x)$. This is not the case, even extremely smooth problems lead to jumps in the derivative. The boundary value problem

$$
-u^{\prime \prime}(x)=-\exp (x) \quad \text { for } \quad-1<x<+1 \quad \text { and } \quad u(-1)=\exp (-1) \quad \text { and } \quad u(+1)=\exp (+1)
$$

has the exact solution $u_{\text {exact }}(x)=\exp (x)$. Solving the problem with only 2 subintervals leads to the errors of $u(x)$ and $u^{\prime}(x)$ in Figure 54. In Figure 54(b) the sizable jump of the derivative at $x=0$ is clearly visible.


Figure 54: Differences of the FEM solution $u_{F E M}(x)$ to the exact solution $u_{\text {exact }}(x)=\exp (x)$

```
\squareTest_C1conforming.m
 n = 2; x = linspace(-1,1,n+1)';
 [x,u] = BVP1D(x,1,0,0,1,@(x) exp (x), exp (-1), exp (1));
 figure(1); plot(x,u)
 xlabel('x'); ylabel('u')
 x_fine = linspace(-1,1,10001)'; [u_fine,du_fine] = pwquadinterp(x,u,x_fine);
 du = FEM1DEvaluateDu(x,u);
 figure(2); plot(x_fine,du_fine,x,du,'+')
 xlabel('x'); ylabel('du/dx'); legend('interpolated','at nodes')
 figure(3); plot(x,u,x_fine,u_fine,x_fine, exp(x_fine))
 xlabel('x'); ylabel('u');
 legend('at nodes','interpolated','exact','location','northwest');
 figure(4); plot(x,u-exp(x),'+',x_fine,u_fine-exp(x_fine))
 xlabel('x'); ylabel('error of u')
 legend('at nodes','interpolated','location','northwest')
 figure(5); plot(x,du-exp(x),'+',x_fine,du_fine-exp(x_fine))
 xlabel('x'); ylabel('error of du/dx')
 legend('at nodes','interpolated','location','northwest')
```


### 5.7 Superconvergence for a 1D BVP

Examine the solution of the 1D BVP

$$
-u^{\prime \prime}=\sin (x) \quad \text { for } \quad 0 \leq x \leq \frac{\pi}{2} \quad \text { with } \quad u(0)=0 \quad \text { and } \quad u^{\prime}\left(\frac{\pi}{2}\right)=0
$$

with the exact solution $u_{\text {exact }}(x)=\sin (x)$. Use the command BVP1D () to find the numerical approximation $u_{\text {FEM }}$ on a coarse grid, and then pwquadinterp () to evaluate the solution on a finer grid.


Figure 55: The solution and difference to the exact solution for a 1D BVP

Observe that

- the solution is rather accurate, even on a grid with few nodes, e.g. 21 nodes.
- The solution is considerably more accurate at the nodes, than in-between nodes. This effect is called superconvergence. You can not count on the effect of superconvergence, as it might not happen in your problem. The convergence in the $L_{2}$ norm is given by the theoretical results in Section 6.7 on page 164.


## BVP1DSuperconvergence.m

```
 N = 10; % number of elements, then 2*N+1 nodes
 x = linspace(0,pi/2,N+1);
 [xn,u] = BVP1D (x,1,0,0,1,@(x)-sin(x),0,1);
 x_fine = linspace(0,pi/2,1001);
 [u_fine du_fine, ddu_fine] = pwquadinterp(xn,u,x_fine);
 figure(1); plot(x_fine,u_fine)
 xlabel('x'); ylabel('u')
 figure(11); plot(x_fine,u_fine-sin(x_fine),xn,u-sin(xn),'+')
 xlabel('x'); ylabel('u_{FEM}-u_{exact}'); xlim([min(x_fine),max(x_fine)])
 legend('interpolated','at nodes')
```

The results generated by pwquadinterp () allow to display the derivatives and the deviation of the derivatives. Observe that

- the first derivative is piecewise linear, but it is hard to see without zooming in.
- the difference to the exact derivative oscillates on each subinterval.


Figure 56: The derivative of the numerical solution and difference to the exact solution

```
 BVP1DSuperconvergence.m
 figure(12); plot(x_fine,du_fine-cos(x_fine))
 xlabel('x'); ylabel('difference du/dx'); xlim([min(x_fine),max(x_fine)])
 figure(3); plot(x_fine,ddu_fine,x_fine,-sin(x_fine))
 xlabel('x'); ylabel('d^2u/dx^2'); xlim([min(x_fine),max(x_fine)])
 legend('FEM','exact')
 figure(13); plot(x_fine,ddu_fine+sin(x_fine))
 xlabel('x'); ylabel('difference d^2u/dx^2'); xlim([min(x_fine),max(x_fine)])
```

The results generated by pwquadinterp () allow to display the second derivatives and the deviation of the derivatives. Observe that

- the second derivative is piecewise constant. This should be no surprise, since piecewise quadratic functions are used the generate the FEM solution.
- the difference to the exact second derivative changes the sign on each subinterval.


Figure 57: The second derivative of the numerical solution and difference to the exact solution

### 5.8 Stability of the time steppers, or lack thereof

Examine the initial boundary value problem

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, t) & =\frac{\partial^{2}}{\partial x^{2}} u(x, t) & & \text { for } 0<x<1 \\
\frac{\partial}{\partial x} u(0, t) & =0 & & \text { for } t>0 \\
u(1, t) & =1 & & \text { for } t>0 \\
u(x, 0) & =0 & & \text { for } 0<x<1
\end{aligned}
$$

Observe that the initial condition $u(x, 0)=0$ does not satisfy the boundary condition $u(1, t)=1$. As a consequence the behavior of the solution will be critical for $x$ close to 1 . Examine the FEM solution generated by different time stepping algorithms. On the interval $[0,1]$ with 14 elements of order 2 use 10 time steps to find the solution at time $t=2$.

- The implicit time stepper is unconditionally stable and L-stable. Thus expect convergence of the solution, but slow convergence, since the scheme is only consistent of order 1. Find the result in Figure 58.
- The Crank-Nicolson time stepper is unconditionally stable, but not L-stable and consistent of order 2. Thus expect convergence of the solution, but CN will have a hard time to deal with the inconsistent initial condition. Find the result in Figure 59 and the problem around $x=1$ is obvious. The solution at $x=1$ oscillates wildly from step to step. This is caused by the stability function $g(z)=\frac{2-z}{2+z}$ for the Crank-Nicolson stepper (see page 177). For very large $z$ the stability condition $|g(z)|<1$ is satisfied, but $g(z)$ is very close to -1 . Thus instead of getting very small the corresponding contribution (eigen mode) will almost keep its amplitude, but flip its sign at each step.
- The explicit time stepper is only conditionally stable. Thus expect serious trouble for large time steps. Taking only 10 time steps leads to a large $\Delta t$. Find the (obviously invalid) result in Figure 60(a).
- The implicit Runge-Kutta time stepper is unconditionally stable, $\mathrm{L}-$ stable and and consistent of order 2 . Thus expect convergence of the solution, and it will take care of the inconsistent initial condition. Find the result in Figure 60(b).

Computations with finer grids and smaller time steps show that the value of $u(x, 2) \approx 0.991$ is a good approximation of the true value.


Figure 58: The solution generated by the implicit time stepper

```
BCleft = [0,0]; BCright = 1; xMax = 1;
```

BCleft = [0,0]; BCright = 1; xMax = 1;
interval = linspace(0,xMax,15); u0 = 0;
interval = linspace(0,xMax,15); u0 = 0;
t0 = 0 ; tend = 2; steps = [10,1];
t0 = 0 ; tend = 2; steps = [10,1];
w = 1; a = 1; b = 0; c = 0; d= 1; f = 0;
w = 1; a = 1; b = 0; c = 0; d= 1; f = 0;
solver = 'implicit'; %% select one solver
solver = 'implicit'; %% select one solver
%% solver = 'explicit';

```
%% solver = 'explicit';
```



Figure 59: The solution generated by the Crank-Nicolson time stepper


Figure 60: The solution at time $t=2$ generated by the explicit and Runge-Kutta time steppers

```
%% solver = 'CN';
%% solver = 'RK';
[x,u,t] = IBVP1D(interval,w,a,b, c,d,f,BCleft,BCright,u0,t0,tend, steps,'solver',solver);
figure(1); mesh(t,x,u); ylim([0,xMax])
 xlabel('t'); ylabel('x'); zlabel('u')
u_at_0 = u(1,end)
u_ones = ones(size(x));
figure(2); plot(x,u_ones,x,u(:,end)); xlim([0,xMax])
 xlabel('x'); ylabel('u'); legend('1', 'FEM','location','west')
```


### 5.9 Conditional stability of the explicit time stepper for a wave equation

For heat problems the explicit solver is only conditional stable, i.e. the time steps $\Delta t$ have to be small enough, see the above Section 5.8. The same is the case for hyperbolic problems. Examine the example in Section 3.7, i.e. solve $\frac{\partial^{2}}{\partial t^{2}} u=\frac{\partial^{2}}{\partial x^{2}} u$. The system of ODEs solved in I2BVP1D () is $\mathbf{W}_{2} \frac{d^{2}}{d t^{2}} \vec{u}(t)=\mathbf{A} \vec{u}(t)$ and the stability condition is using the largest generalized eigenvalue $\lambda_{\max }$ of $\mathbf{A} \vec{u}=\lambda \mathbf{W}_{2} \vec{u}$ and given by

$$
\Delta t \leq \frac{2}{\sqrt{\lambda_{\max }}}
$$

The command I2BVP1D () will issue a warning if this condition is violated for the explicit solver, but attempts to return results anyhow.

To obtain the stability condition examine the discretization of the ordinary differential equation $\ddot{u}=-\lambda u$.

$$
\begin{aligned}
u_{i-1}-2 u_{i}+u_{u+1} & =-(\Delta t)^{2} \lambda u_{i} \\
\binom{u_{i}}{u_{i+1}} & =\left(\begin{array}{cc}
\left(-(\Delta t)^{2} \lambda+2\right) u_{i}-u_{i-1}
\end{array}\right)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 2-(\Delta t)^{2} \lambda
\end{array}\right]\binom{u_{i-1}}{u_{i}} \\
0 & =\operatorname{det}\left[\begin{array}{cc}
0-\mu & 1 \\
-1 & (\Delta t)^{2} \lambda+2-\mu
\end{array}\right]=\mu^{2}-\left(2-(\Delta t)^{2} \lambda\right) \mu+1 \\
& =\mu^{2}-\left(\mu_{1}+\mu_{2}\right) \mu+\mu_{1} \mu_{2}
\end{aligned}
$$

Thus conclude that $\mu_{1} \cdot \mu_{2}=1$. For the system to be stable the eigenvalues $\mu_{i}$ have to satisfy $\left|\mu_{i}\right|=1$. This is the case iff the $\mu_{i}$ are complex, thus the discriminant of the quadratic equation has to be negative.

$$
\begin{aligned}
& 0 \geq\left(2-(\Delta t)^{2} \lambda\right)^{2}-4=-4(\Delta t)^{2} \lambda+(\Delta t)^{4} \lambda^{2}=(\Delta t)^{2} \lambda\left(-4+(\Delta t)^{2} \lambda\right) \\
& \lambda \leq \frac{4}{(\Delta t)^{2}} \quad \text { or } \quad \Delta t \leq \frac{2}{\sqrt{\lambda}}
\end{aligned}
$$

For the second order elements used in I2BVP1D () the value of the largest generalized eigenvalue $\lambda_{\max }$ is approximately ${ }^{13}$ proportional to $(\Delta x)^{2}$. This allows to adapt the time step $\Delta t$ such that the algorithm is stable. In the source code of I2BVP1D.m (or I2BVP2D.m) uncomment the lines

```
%%lambda = eigs (A,W2,1);
%%disp(sprintf("Values: lambda = %g, dt = %g, 2/sqrt(lambda) =
%%%g\n", ...
%%%lambda,dt, 2/sqrt(lambda)))
```

to observe the critical values.
In the code WaveExplicitTest.m select the solver (explicit or implicit) and the number of time steps (105 or 100).

- For Figure 61(a) the explicit solver with 105 time steps is used. The value of $\Delta t$ is just small enough for the algorithm to be stable.

[^8]- For Figure 61(b) the explicit solver with 100 time steps is used. The value of $\Delta t$ is slightly to large for the algorithm to be stable. The blowup of the rapidly oscillating solution is obvious.
- For Figure 61(c) the implicit solver with 100 time steps is used. The implicit algorithm is unconditionally stable.

This example should clearly illustrate that respecting the stability condition for the explicit solver is essential. For the unstable situation you will in most cases not obtain number at all, but NaNs. This author recommends to use the implicit solver for 1D problems. The similar solver I2BVP 2D () for 2D problems shows the same stability behavior.


Figure 61: Solutions of the wave equation at the time $t=t_{\text {end }}$

```
 WaveExplicitTest.m
 %% test the stability 1D wave equation
 if 1
 solver = 'explicit';
 else
 solver = 'implicit';
 endif
 if 1
 steps = [20,5]; %% unstable for explicit solver
 else
 steps = [21,5]; %% stable for both solvers
 endif
 a = 1; b = 0; c = 0; d= 1; f = 0; w2 = 1; w1 = 0; BCleft = 0; BCright = [0,0];
 t0 = 0; tend = 5; interval = linspace(0,3*pi,51)';
 u0 = @(x) sin(x) .*(x<=pi); u1 = @(x) -cos(x) .*(x<=pi);
 [x,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend, ...
 steps,'solver',solver);
 figure(11); clf; mesh(t,x,u); xlabel('time t'); ylabel('position x'); zlabel('u')
 xlim([min(t),max(t)]); ylim([min(x),max(x)])
 figure(12); clf; contour(t,x,u,21); xlabel('time t'); ylabel('position x');
 figure(13); plot(x,u(:,end)); xlabel('x'); ylabel('u(x) at t_{end}');
 xlim([min(x),max(x)])
```


### 5.10 The shear-locking effect caused by linear elements

Examine a domain $\Omega=\left[\frac{-L}{2}, \frac{+L}{2}\right] \times\left[\frac{-H}{2}, \frac{+H}{2}\right] \subset \mathbb{R}^{2}$ with $L=H=0.1$ and apply a horizontal deformation $u_{1}$ on the left and right edges at $x=\frac{ \pm L}{2}$ of size $\pm c y= \pm 5 \cdot 10^{-4} y$. The upper and lower edge are force free. Use the material parameters $E=100 \cdot 10^{9}$ and $\nu=0$. Find the original and deformed domain in Figure 62. One can verify ${ }^{14}$ that an exact


Figure 62: Original and deformed domain and the Gauss integration points for linear elements
solution of the boundary value problem is given by

$$
u_{1}(x, y)=\frac{2 c}{L} x y \quad, \quad u_{2}(x, y)=\frac{c}{L}\left(\frac{L^{2}}{4}-x^{2}\right) \quad \text { where } \quad c=5 \cdot 10^{-4}
$$

This exact solution leads to the strains $\varepsilon_{x x}=\frac{2 c}{L} y$ and $\varepsilon_{y y}=\varepsilon_{x y}=0$ and thus the elastic energy (use the elastic energy density (21) with $\nu=0$ )

$$
\begin{aligned}
U_{\text {elast }} & =U_{\varepsilon_{x x}}+U_{\varepsilon_{y y}}+U_{\varepsilon_{x y}} \\
& =\frac{E}{2} \iint_{\Omega} \varepsilon_{x x}^{2} d A+\frac{E}{2} \iint_{\Omega} \varepsilon_{y y}^{2} d A+\frac{E}{2} \iint_{\Omega} 2 \varepsilon_{x y}^{2} d A \\
& =\frac{E}{2} \int_{-H / 2}^{+H / 2} \int_{-L / 2}^{+L / 2} \frac{4 c^{2}}{L^{2}} y^{2} d x d y+0+0=\frac{E}{2} \frac{4 c^{2}}{L^{2}} L \frac{2 H^{3}}{38}=\frac{125}{3} \approx 41.667
\end{aligned}
$$

Determine approximate solutions of this plane stress problem with NH=NL layers in either direction and using either linear or quadratic elements. Then use these solutions $\vec{u}_{1}$ and $\vec{u}_{2}$ and the function FEMgriddata () to evaluate the strains $\varepsilon_{x x}, \varepsilon_{y y}$ and $\varepsilon_{x y}$ on a fine $x y$-grid. Find the results for two layers ( $\mathrm{NL}=\mathrm{NH}=2$ ) in Figure 63. Observe that the strains obtained by quadratic elements are very close to the strains of the exact solution. The strains based on linear elements show some surprising features:

- The strains are piecewise constant! This should be no surprise, since a partial derivative of order one of a piecewise linear function leads to a piecewise constant strain function. For this reason first order triangular elements are also called Constant Strain Triangles, or short CST elements.
- The piecewise constant approximation of the normal strain $\varepsilon_{x x}$ is as good as can be, since only 8 triangular elements are used with this mesh.
- The piecewise approximation of the shearing strain $\varepsilon_{x y}$ is drastically different from the exact value 0 . This is caused by the two contributions to $\varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)$, which do not cancel out on the piecewise constant sections. The approximation based on second order elements is quite good, since $10^{-19} \approx 0$.

[^9]

Figure 63: The strains $\varepsilon_{x x}$ and $\varepsilon_{x y}$ with two layers in each direction for linear and quadratic elements

To examine the stiffness of the deformed body compute the elastic energy put into the body by the deformation. To arrive at reliable values a couple of steps are performed:

1. Generate a rather fine grid on the domain $\Omega$, using the command meshgrid().
2. Evaluate the partial derivatives of $u_{1}$ and $u_{2}$ on the grid with the help of FEMgriddata(). Then compute the three strains on the fine grid.
3. Use the command mesh () to visualize a few strains, leading to Figure 63.
4. With the strains use the expressions for the elastic energy density to evaluate the different contributions.
5. Use an iterated trapezoidal rule ( $\operatorname{trapz}())$ to perform the numerical integration for the three contributions to the elastic energy.

The above is performed for different numbers of layers of first and second order elements. Find the results in Table 11. This

| element type | \# of layers | $U_{\text {elast }}$ | $U_{\varepsilon_{x x}}$ | $U_{\varepsilon_{y y}}$ | $U_{\varepsilon_{x y}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| exact |  | 41.666 | 41.666 | 0 | 0 |
| quadratic | $\mathrm{NL}=\mathrm{NH}=1$ | 41.759 | 41.759 | 0 | 0 |
| quadratic | $\mathrm{NL}=\mathrm{NH}=2$ | 41.759 | 41.759 | 0 | 0 |
| quadratic | $\mathrm{NL}=\mathrm{NH}=5$ | 41.759 | 41.759 | 0 | 0 |
| linear | $\mathrm{NL}=\mathrm{NH}=1$ | 187.5 | 125 | 0 | 62.5 |
| linear | $\mathrm{NL}=\mathrm{NH}=2$ | 78.472 | 62.847 | 0 | 15.625 |
| linear | $\mathrm{NL}=\mathrm{NH}=5$ | 48.122 | 45.622 | 0 | 2.500 |
| linear | $\mathrm{NL}=\mathrm{NH}=10$ | 43.850 | 43.225 | 0 | 0.625 |

Table 11: Elastic energy contributions for shearing
table shows a few, possibly surprising, results.

- The results generated be second order elements are very accurate, even for one layer only. This is caused by the fact that the exact solution is a polynomial of degree 2 and thus can be represented exactly by second order elements. The remaining, small difference can be made smaller by using a better integration scheme. See the remarks below (page 121), where an exact result is obtained.
- The results based on linear elements are severely different. The elastic energy is considerably too high and thus the solid considered to be much stiffer than it actually is. There are two contributions to this no-desirable effect:

1. The piecewise constant patches lead to larger integrals.
2. The shearing contribution by $\varepsilon_{x y}$ does not vanish. The effect is often called shear locking.

For a small number of layers the effect is drastic, for larger number of layers the effect becomes smaller.

```
L = 0.1; H = 0.1; E = 100e9; nu = 0;
%% shearing of elements by applied displacement
NL = 2; %% elements along length L
NH = NL; %% elements along height H
Order = 1; %% order of elements, either 1 or 2
FEMmesh = CreateMeshRect([-L/2:L/NL:L/2],[-H/2:H/NH:+H/2],-22,-22,-11,-11);
if Order==2
 FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
 endif
 function res = gD1(xy)
```

```
 Disp = 0.01;
 res = Disp*xy(:,1).*xy(:,2);
endfunction
[u1,u2] = PlaneStress(FEMmesh, E, nu, {0,0},{'gD1',0},{0,0});
figure(2); FEMtrimesh(FEMmesh,u1); xlabel('x'); ylabel('y'); zlabel('ul')
figure(3); FEMtrimesh(FEMmesh,u2); xlabel('x'); ylabel('y'); zlabel('u2')
figure(1); factor = 4e2;
trimesh(FEMmesh.elem,FEMmesh.nodes(:,1) +factor*u1,FEMmesh.nodes(:,2) +factor*u2,...
 'color','red','linewidth',2);
hold on ;
trimesh(FEMmesh.elem,FEMmesh.nodes(:,1),FEMmesh.nodes(:,2),...
 'color','green','linewidth',1);
plot(FEMmesh.GP(:,1),FEMmesh.GP(:,2),'b*');
hold off; xlabel('x'); ylabel('y'); xlim([-0.06,+0.06]); ylim([-0.06,+0.06]); axis equal
%% generate the data on the grid
x = linspace(-L/2,L/2,31); y = linspace(-H/2,+H/2,31); [xx,yy] = meshgrid(x,y);
[uli,eps_xxi,eps_xy1i] = FEMgriddata(FEMmesh,u1,xx,yy);
[u2i,eps_xy2i,eps_yyi] = FEMgriddata(FEMmesh,u2,xx,yy);
eps_xyi = (eps_xy1i+eps_xy2i)/2;
figure(12); mesh(xx,yy,eps_xxi); xlabel('x'); ylabel('y'); zlabel('\epsilon_{xx}')
figure(13); mesh(xx,yy,eps_yyi); xlabel('x'); ylabel('y'); zlabel('\epsilon_{yy}')
figure(14); mesh(xx,yy,eps_xyi); xlabel('x'); ylabel('y'); zlabel('\epsilon_{xy}')
Wi = 0.5*E/(1-nu^2)*(eps_xxi.^2 + eps_yyi.^2+2*nu*eps_xxi.*eps_yyi+2*(1-nu)*eps_xyi.^2);
Wxxi = 0.5*E/(1-nu^2)*(eps_xxi. ^2);
Wyyi = 0.5*E/(1-nu^2)*(eps_yyi.^2);
Wxxyyi = 0.5*E/(1-nu^2)*(2*nu*eps_xxi.*eps_yyi);
Wxyi = 0.5*E/(1-nu^2)*(2*(1-nu)*eps_xyi. ^2);
figure(15); mesh(xx,yy,Wi);xlabel('x'); ylabel('y'); title('energy density')
EnergiesGrid = [trapz(x,trapz(y,Wi)),trapz(x,trapz(y,Wxxi)), ...
trapz(x,trapz(y,Wyyi)),trapz(x,trapz(y,Wxyi))]
```

The evaluation on a fine grid might seems unnecessary, since FEMoctave provides EvaluateStrain () to determine the values of the strains at the nodes. Then determine the contributions to the energy densities and integrate using FEMIntegrate().

- The results for second order meshes seem reasonable.
- The results based on linear meshes are off, values and graphics. This is caused by the algorithms used:

1. EvaluateStrain() returns values at the nodes. For the derivatives the average value of the neighboring elements are used, not the values inside the elements.
2. FEMIntegrate () will then take those values at the nodes and (for linear elements) apply a piecewise linear interpolation, followed by a Gauss integration. Thus the values used for the integration are drastically different form the values used when the equation was solved.
```
ShearLocking.m
```

```
%%% evaluate at the nodes
```

%%% evaluate at the nodes
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
W = 0.5*E/ (1-nu^2) * (eps_xx.^2 + eps_yy.^2+2*nu*eps_xx.*eps_yy+2* (1-nu) *eps_xy. ^2);
W = 0.5*E/ (1-nu^2) * (eps_xx.^2 + eps_yy.^2+2*nu*eps_xx.*eps_yy+2* (1-nu) *eps_xy. ^2);
Wxx = 0.5*E/ (1-nu^2) *(eps_xx.^2);
Wxx = 0.5*E/ (1-nu^2) *(eps_xx.^2);
Wyy = 0.5*E/ (1-nu^2) *(eps_yy.^2);

```
Wyy = 0.5*E/ (1-nu^2) *(eps_yy.^2);
```

```
Wxy = 0.5*E/(1-nu^2)* (2* (1-nu) *eps_xy.^2);
%% integration results are not reliable
EnergiesFEMIntegrate = [FEMIntegrate(FEMmesh,W),FEMIntegrate(FEMmesh,Wxx), . .
 FEMIntegrate (FEMmesh,Wyy),FEMIntegrate (FEMmesh,Wxy)]
figure(4); FEMtrimesh(FEMmesh,W);
 xlabel('x'); ylabel('y'); title('energy density, on nodes'); view([-50,20])
```

The above problem can be removed by evaluating the partial derivatives at the Gauss points, instead of the nodes. Use FEMEvaluateGP () to determine the contributions to the elastic energy density. Then integrate with FEMIntegrate ().

## ShearLocking.m

```
%% integrate by evaluation at the Gauss points
[u1G,gradU1] = FEMEvaluateGP (FEMmesh,u1);
[u2G,gradU2] = FEMEvaluateGP (FEMmesh,u2);
eps_xxG = gradU1(:,1); eps_yyG = gradU2(:,2); eps_xyG = (gradU1(:,2) +gradU2(:,1))/2;
W = 0.5*E/(1-nu^2)*(eps_xxG.^2 + eps_yyG.^2+2*nu*eps_xxG.*eps_yyG+2* (1-nu)*eps_xyG.^2);
Wxx = 0.5*E/(1-nu^2) *(eps_xxG.^2);
Wyy = 0.5*E/ (1-nu^2) *(eps_yyG.^2);
Wxxyy = 0.5*E/ (1-nu^2)* (2*nu*eps_xxG.*eps_yyG);
Wxy = 0.5*E/ (1-nu^2) *(2*(1-nu) *eps_xyG.^2);
EnergiesFEMIntegrateGauss = [FEMIntegrate(FEMmesh,W),FEMIntegrate(FEMmesh,Wxx),...
 FEMIntegrate (FEMmesh,Wyy),FEMIntegrate (FEMmesh,Wxy)]
```

Below find the results for two layers $\mathrm{NL}=\mathrm{NH}=2$ and first and second order elements. Shown are in that order

$$
\begin{aligned}
\iint_{\Omega} \mathrm{W} & =\iint_{\Omega} \mathrm{Wxx}+\mathrm{Wyy}+\mathrm{Wxy}+\mathrm{Wxxyy} \\
\iint_{\Omega} \mathrm{Wxx} & =\frac{E}{2\left(1-\nu^{2}\right)} \iint_{\Omega} \varepsilon_{x x}^{2} d A \\
\iint_{\Omega} \mathrm{Wyy} & =\frac{E}{2\left(1-\nu^{2}\right)} \iint_{\Omega} \varepsilon_{y y}^{2} d A \\
\iint_{\Omega} \mathrm{Wxy} & =\frac{E}{2\left(1-\nu^{2}\right)} \iint_{\Omega} 2(1-\nu) \varepsilon_{x y}^{2} d A
\end{aligned}
$$

- first order elements

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | ---: |
| EnergiesGrid | $=$ | 78.4722 | 62.8472 | 0 | 15.6250 |
| EnergiesFEMIntegrate | $=$ | 67.4913 | 58.5938 | 0 | 8.8976 |
| EnergiesFEMIntegrateGauss | $=$ | 78.1250 | 62.5000 | 0 | 15.6250 |

- second order elements

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EnergiesGrid | $=4.1759 \mathrm{e}+01$ | $4.1759 \mathrm{e}+01$ | $6.8171 \mathrm{e}-30$ | $8.2941 \mathrm{e}-30$ |
| EnergiesFEMIntegrate | $=4.1667 \mathrm{e}+01$ | $4.1667 \mathrm{e}+01$ | $6.6145 \mathrm{e}-30$ | $2.7413 \mathrm{e}-30$ |
| EnergiesFEMIntegrateGauss | $=4.1667 \mathrm{e}+01$ | $4.1667 \mathrm{e}+01$ | $6.5378 \mathrm{e}-30$ | $8.5890 \mathrm{e}-30$ |

Observe that the results based on the integration with the Gauss points yields the same numbers as the exact formula.

### 5.11 Bending of an Euler beam

A plate of length $L=1$, width $W=1$ and height $H=0.1$ is attached at the left edge and an upward force of $F=100$ is applied on the right side. Use the material parameters $E=100 \cdot 10^{9}$ and $\nu=0$. Based on the Euler beam theory conclude


Figure 64: The original shape of the a beam and its (exaggerated) deformed shape, using two layers of elements

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}} u_{2}(x, y) & =\frac{M}{E I}=\frac{F}{E I}(L-x) \quad, \quad \frac{\partial}{\partial x} u_{2}(x, y)=\frac{F}{E I}\left(L x-\frac{1}{2} x^{2}\right) \\
u_{2}(x, y) & =\frac{F}{E I}\left(\frac{L}{2} x^{2}-\frac{1}{6} x^{3}\right) \\
u_{1}(x, y) & =-y \frac{\partial}{\partial x} u_{2}(x, y)=-\frac{F}{E I}\left(L x-\frac{1}{2} x^{2}\right) y \\
\varepsilon_{x x}(x, y) & =\frac{\partial u_{1}(x, y)}{\partial x}=-\frac{F}{E I}(L-x) y \quad, \quad \varepsilon_{y y}(x, y)=\frac{\partial u_{2}(x, y)}{\partial y}=0 \\
\varepsilon_{x y}(x, y) & =\frac{1}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)=\frac{F}{E I}\left(-\left(L x-\frac{1}{2} x^{2}\right)+\left(\frac{L}{2} 2 x-\frac{1}{2} x^{2}\right)\right)=0
\end{aligned}
$$

For the above parameters with the second moment $I=\frac{W H^{3}}{12}$ of the cross section obtain the following maximal values.

$$
\begin{aligned}
u_{2}(L, y) & =\frac{F}{3 E I} L^{3}=4 \frac{F}{E W H^{3}} L^{3}=4 \cdot 10^{-6} \\
u_{1}(L,-H / 2) & =\frac{F}{4 E I} L H=3 \frac{F}{E W H^{2}} L=3 \cdot 10^{-7} \\
\varepsilon_{x x}(0,-H / 2) & =\frac{F}{2 E I} L H=6 \frac{F}{E W H^{2}} L=6 \cdot 10^{-7}
\end{aligned}
$$

Use these results to verify the accuracy of the numerical approximations.
To examine the performance of the FEM algorithms use a rectangular mesh with NL sections along the horizontal $x$-axis and NH layers in the vertical $y$-direction. The code is using first, second or third order elements. In Figure 65 find the mesh and the corresponding integration points for meshes with $\mathrm{NL}=10$ and just one layer, i.e. $\mathrm{NH}=1$. Observe that the figure uses different scaling, all triangles have height and width 0.1 , which is usually recommended for good quality meshes. The code was run with $\mathrm{NL}=10$ horizontal sections and $\mathrm{NH}=1$ or 5 vertical sections. The elastic energy density $W_{\text {stress }}$ is computed and displayed in Figure 66. Observe the piecewise constant energy density for linear elements, i.e. CST elements.

Multiple runs of the code BendingBeam.m lead to the results in Table 12. The values for the elastic energy are computed with the help of the strain values at the Gauss points. Observe that second and third order elements generate rather accurate results, even for a very coarse grid. With a coarse grid of linear elements the effect of shear locking is clearly visible. But even for a $80 \times 8$ grid the results are not very accurate.

## BendingBeam.m

```
%% bending of beam by applied force
L = 1; H = 0.1; E = 100e9; nu = 0; Force = 100;
NL = 20; %% number of elements along length L
NH = NL/10; %% number of elements along height H
```



Figure 65: Meshes for linear and quadratic elements with one layer, with the integration points


Figure 66: The elastic energy density of the bending beam with one or five layers

| element order | NL | NH | $\max \left\{u_{2}\right\}$ | $\max \left\{\varepsilon_{x x}\right\}$ | energy |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Euler beam |  |  | $4 \cdot 10^{-6}$ | $6 \cdot 10^{-7}$ | $2 \cdot 10^{-4}$ |
| first | 80 | 8 | $3.8159 \cdot 10^{-6}$ | $5.7295 \cdot 10^{-7}$ | $1.9079 \cdot 10^{-4}$ |
| first | 40 | 4 | $3.3036 \cdot 10^{-6}$ | $4.8900 \cdot 10^{-7}$ | $1.6517 \cdot 10^{-4}$ |
| first | 20 | 2 | $2.1525 \cdot 10^{-6}$ | $3.1248 \cdot 10^{-7}$ | $1.0762 .10^{-4}$ |
| first | 10 | 1 | $0.9079 \cdot 10^{-6}$ | $1.2718 \cdot 10^{-7}$ | $0.4539 \cdot 10^{-4}$ |
| second | 80 | 8 | $4.0243 \cdot 10^{-6}$ | $6.1660 \cdot 10^{-7}$ | $2.0120 \cdot 10^{-4}$ |
| second | 40 | 4 | $4.0242 \cdot 10^{-6}$ | $6.1101 \cdot 10^{-7}$ | $2.0120 \cdot 10^{-4}$ |
| second | 20 | 2 | $4.0235 \cdot 10^{-6}$ | $6.0326 \cdot 10^{-7}$ | $2.0117 \cdot 10^{-4}$ |
| second | 10 | 1 | $4.0162 \cdot 10^{-6}$ | $5.8832 \cdot 10^{-7}$ | $2.0081 \cdot 10^{-4}$ |
| third | 80 | 8 | $4.0244 \cdot 10^{-6}$ | $6.2131 \cdot 10^{-7}$ | $2.0122 \cdot 10^{-4}$ |
| third | 40 | 4 | $4.0243 \cdot 10^{-6}$ | $6.1708 \cdot 10^{-7}$ | $2.0122 \cdot 10^{-4}$ |
| third | 20 | 2 | $4.0243 \cdot 10^{-6}$ | $6.1176 \cdot 10^{-7}$ | $2.0121 \cdot 10^{-4}$ |
| third | 10 | 1 | $4.0241 \cdot 10^{-6}$ | $6.0592 \cdot 10^{-7}$ | $2.0120 \cdot 10^{-4}$ |

Table 12: Different values for the deformation of a bending beam, depending on the size of the grid

```
Order = 2; %% order of elements, either 1 or 2
FEMmesh = CreateMeshRect([0:L/NL:L],[-H/2:H/NH:+H/2],-22,-22,-11,-33);
figure(1); FEMtrimesh(FEMmesh);%% axis equal;
 hold on; plot(FEMmesh.GP(:,1),FEMmesh.GP(:,2),'b*'); hold off
 xlabel('x'); ylabel('y')
switch Order
 case 2
 FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
 case 3
 FEMmesh = MeshUpgrade(FEMmesh,'cubic');
endswitch
[u1,u2] = PlaneStress(FEMmesh, E, nu, {0,0},{0,0},{0,Force/H});
figure(2); FEMtrimesh(FEMmesh,u1); xlabel('x'); ylabel('y'); zlabel('u1')
figure(3); FEMtrimesh(FEMmesh,u2); xlabel('x'); ylabel('y'); zlabel('u2')
FEMoctave_u2Max = max(u2);
EulerBeam = 4*Force*L^3/(E*H^3);
MaximalDisplacements = [EulerBeam, FEMoctave_u2Max]
[eps_xx,eps_yy,eps_xy] = EvaluateStrain(FEMmesh,u1,u2);
figure(12); FEMtrimesh(FEMmesh,eps_xx); xlabel('x'); ylabel('y'); zlabel('eps_{xx}')
Results_Maxu1_Maxeps_xx = [max(abs(u1)), max(abs(eps_xx))]
W = 0.5*E/(1-nu^2) *(eps_xx.^2 + eps_yy.^2+2*nu*eps_xx.*eps_yy+2*(1-nu) *eps_xy.^2);
EnergyByForce = [Force*EulerBeam/2, Force*max(u2)/2]
figure(4);FEMtrimesh(FEMmesh,W); xlabel('x'); ylabel('y');
 title('energy density, on nodes'); view([-50,20])
figure(5);clf;FEMtricontour(FEMmesh,W); xlabel('x'); title('energy density')
%% integrate by evaluation at the Gauss points
W = EvaluateEnergyDensity(FEMmesh,eps_xx,eps_yy,eps_xy,E,nu);
EnergyIntegration = FEMIntegrate(FEMmesh,W)
[xx,yy] = meshgrid(linspace(0,L,101),linspace(-H/2,+H/2,51));
[uli,eps_xxi,eps_xy1i] = FEMgriddata(FEMmesh,u1,xx,yy);
```

```
[u2i,eps_xy2i,eps_yyi] = FEMgriddata(FEMmesh,u2,xx,yy);
eps_xyi = (eps_xy1i+eps_xy2i)/2;
Wi = 0.5*E/(1-nu^2)*(eps_xxi.^2+eps_yyi.^2+2*nu*eps_xxi.*eps_yyi+2*(1-nu)*eps_xyi.^2);
figure(14); mesh(xx,yy,Wi);xlabel('x'); ylabel('y');
 title('energy density, on fine grid'); view([-50,20])
%% show deformed domain
factor = 1e5/2;
figure(100); ShowDeformation(FEMmesh,u1,u2,factor); xlabel('x'); ylabel('y'); axis equal
```


### 5.12 Eigenvalues and eigenmodes of a slender beam

For the beam in Section 3.10.3 (page 42) more information can be obtained by PlaneStressEig (). The code EulerBeamModes. allows to examine multiple aspects of the eigenmodes of a bending beam. The code will generate figures similar to Figure 67. The Aluminum beam of length $L=0.2$, height $H=0.01$ and width $W=0.01$ is clamped at the left edge at $x=0$.

- Change the value of Mode to evaluate different modes, e.g. Mode $=4$. The result might be surprising at first sight.
- Change the height $H$ of the beam and observe the effect of the frequencies and maybe even the shape of the modes.
- The code allows to use linear, quadratic or cubic elements by selecting MeshType. Observe that the frequencies obtained by quadratic elements are smaller then the ones by linear elements, Cubic elements lead to the smallest frequencies.
- Modify the size of the mesh and observe that for finer meshes the frequencies are slightly lower.
- For a coarse mesh and linear elements the frequencies are considerably to high. This is caused by shear locking, see Section 5.10.

```
 EulerBeamModes.m
clear *
L = 0.20; H = 0.01; W = 0.01; rho = 2.7e3;
E = 70e9; nu = 0.33; %% Aluminum
I2 = 1/12*H^ 3*W;
Mode = 2
Nx = 20; Ny = 3;
MeshType = 'linear';
MeshType = 'quadratic';
%MeshType = 'cubic';
f = @(z) 1+\operatorname{cos(z).*\operatorname{cosh(z); %% clamped at x=0, free at x=L}}\mathbf{|}=\textrm{L}
% z = linspace(0,Mode*pi,100);
% figure(101); plot(z,f(z)); xlabel('z'); ylabel('f(z)')
z0 = fsolve(f,Mode*pi-pi/2);
freqEuler = z0^2*sqrt (E*I2/(rho*H*W))/(2*pi*L^2)
% p = k*lambda^0.25*L;
% C = (sin (p) -sinh (p))/(\operatorname{cos}(p)+\operatorname{cosh}(p));
% x = linspace(0,L); x_p = k*lambda^0.25*x;
% y = cos(x_p)-\operatorname{cosh(x_p) + C* (sin(x_p) -sinh(x_p)); y = y/y (end);}
% figure(102); plot(x,y); xlabel('x'); ylabel('height y(x)');
Mesh = CreateMeshRect(linspace(0,L,Nx+1),linspace(0,+H,Ny+1),-22,-22,-11,-22);
switch MeshType
 case 'quadratic'
 Mesh = MeshUpgrade(Mesh,'quadratic');
case 'cubic'
 Mesh = MeshUpgrade(Mesh,'cubic');
endswitch
```



Figure 67: The second eigenmode of a bending beam

```
[la,u1,u2] = PlaneStressEig(Mesh,E,nu,rho,max(4,Mode));
freqFEM = sqrt(la')/(2*pi)
u1_disp = u1(:,Mode); u2_disp = u2(:,Mode);
MaxDisp = max (max (abs (u1_disp)),max(abs (u2_disp)));
ul_disp = u1__disp/MaxDisp; u2_disp = u2_disp/MaxDisp;
figure(1); FEMtrimesh(Mesh,ul_disp); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(2); FEMtrimesh(Mesh,u2_disp); xlabel('x'); ylabel('y'); zlabel('u_2')
[sigma_x,sigma_y,tau_xy] = EvaluateStress(Mesh,u1_disp,u2_disp,E,nu);
figure(11); FEMtrimesh(Mesh,sigma_x*1e-9);
 xlabel('x'); ylabel('y'); zlabel('\sigma_x [GPa]')
figure(12); FEMtrimesh(Mesh,sigma_y*1e-9);
 xlabel('x'); ylabel('y'); zlabel('\sigma_y [GPa]')
figure(13); FEMtrimesh(Mesh,tau_xy*1e-9);
 xlabel('x'); ylabel('y'); zlabel('\tau_{xy} [GPa]')
figure(20);clf; factor = 0.005;
trimesh(Mesh.elem,Mesh.nodes(:,1) +factor*u1_disp,Mesh.nodes(:,2)+factor*u2_disp,...
'color','red','linewidth',2);
hold on ;
trimesh(Mesh.elem,Mesh.nodes(:,1),Mesh.nodes(:,2),'color','green','linewidth',1);
xlabel('x'); ylabel('y'); %%xlim([0,L*1.1])
-->
Mode = 2
freqEuler = 1288.7
freqFEM = 205.66 1274.56 3508.03 6372.09
```


### 5.13 Adding missing constraints

### 5.13.1 Adding a constraint for a steady state heat problem

Examine the boundary value problem

$$
\begin{aligned}
-\Delta u(x, y) & =\sin (\pi x) & & \text { for }-1 \leq x, y \leq+1 \\
\frac{\partial}{\partial n} u(x, y) & =0 & & \text { on the boundary }
\end{aligned}
$$

This BVP with Neumann boundary conditions only has solution if the integral of the RHS over the domain vanishes. This is the case. Since $\iint_{\Omega} \sin (\pi x) d A=0$ this problem has solutions, but infinitely many. The solutions differ by a constant. To obtain a unique solution the value at one point can be selected, e.g. at $(x, y)=(0,0)$ select $u(0,0)=7$. With this additional constraint the solution is unique. In the code AdditionalConstraint.m below the command MeshAddConstraint () us used to

- select the node closes to the origin by Position $=[0,0]$
- add the constraint $u=7$ at this node by using the function $g_{D}(x, y)=7$

The two numbers generated by the code illustrate that

- the first solution $u_{1}$ without the constraint has a huge mean value. The condition number of the matrix generated by the FEM code is huge. But Octave still shows a solution. It is the users responsibility to realize that the solution is not the desired one.
- the average value of the solution $u_{2}$ at the nodes a close to 7 and Figure 68 confirms the result. Replacing the average values at the nodes by a numerical integration leads to a result even closer to 7 .

```
 AdditionalConstraintHeat.m
 Mesh = CreateMeshTriangle('square',[-1,-1,-2;1,-1,-2;1 1 -2; -1 1 -2],0.05);
 figure(1); FEMtrimesh(Mesh);
 Mesh = MeshUpgrade(Mesh,'quadratic');
 function res = f(xy)
```

```
 res = sin(pi*xy(:,1));
endfunction
u1 = BVP2D(Mesh,1,0,0,0,'f',7,0,0);
MeanSolution1 = mean(u1)
Mesh = MeshAddConstraint (Mesh, [0,0],-1);
u2 = BVP2D (Mesh,1,0,0,0,'f',7,0,0);
figure(1); FEMtrimesh(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u')
MeanSolution2 = mean(u2)
MeanSolution2Intgeration = FEMIntegrate(Mesh,u2)/4
-->
MeanSolution1 = -6.6466e+07
MeanSolution2 = 6.9988
MeanSolution2Intgeration = 7.0000
```



Figure 68: The solution of the boundary value problem with an additional constraint

### 5.13.2 Adding constraints for an elasticity problem

A similar setup can be considered for a plane stress elasticity problem. On a square $-1 \leq x, y \leq+1$ a set of boundary forces is applied.

$$
\begin{array}{ll}
f_{x}(+1, y)=+\cos (y) & \text { for }-1 \leq y \leq+1 \\
f_{x}(-1, y)=-\cos (y) & \text { for }-1 \leq y \leq+1 \\
f_{y}(x,+1)=+\cos (x) & \text { for }-1 \leq x \leq+1 \\
f_{y}(x,-1)=-\cos (x) & \text { for }-1 \leq x \leq+1
\end{array}
$$

The net force on the plate is zero, i.e. there is a solution. But the plate is free to move and rotate. With PlaneStress () a solution can be determined, leading to Figure 69(a) for the total displacement $u=\sqrt{u_{1}^{2}+u_{2}^{2}}$. It is clearly visible that the origin $(0,0)$ is displaced. Modifying the setup slightly ${ }^{15}$ can lead to very different solutions.

Adding two constraints

- zero displacement in $x$ and $y$-direction at the origin by using Pos $=[0.0]$; Mode $=[-1,-1]$;
- and zero dispacement in $y$-direction at the point $(1,0)$ by using Pos $=[1,0] ;$ Mode $=[-2,-1]$;
- each followed by a call of Mesh = MeshAddConstraint (Mesh,Pos,Mode);
prevents the plate from moving and rotating freely. A call of PlaneStress () then leads to Figure 69(b). It is clearly visible that the origin $(0,0)$ is not moved. Slight changes in the setup will lead to slightly different solutions.

[^10]
## AdditionalConstraintPlate.m

```
 Mesh = CreateMeshRect(linspace(-1,1,9),linspace(-1,1,9),-23, -23, -32, -32);
 Mesh = MeshUpgrade(Mesh,'quadratic');
 function res = fx(xy)
 res = 1*xy(:,1).*cos(xy(:,2));
 endfunction
 function res = fy(xy)
 res = 1*xy(:,2).*cos(xy(:,1));
 endfunction
 [u1,u2] = PlaneStress(Mesh,1,0,{0,0},{0,0},{'fx','fy'});
 figure(2); FEMtrimesh(Mesh,u1); xlabel('x'); ylabel('y'); zlabel('u_1')
 figure(3); FEMtrimesh(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2')
 figure(4); FEMtrimesh(Mesh,sqrt(u1.^2+u2.^2)); xlabel('x'); ylabel('y'); zlabel('|u|')
 figure(5); clf; FEMtricontour(Mesh,sqrt(u1.^2+u2.^2)); xlabel('x'); ylabel('y'); axis equal
 Pos = [0.0]; Mode = [-1,-1]; %% fix the origin
 Mesh = MeshAddConstraint(Mesh,Pos,Mode); %% remove rotations
 Pos = [1,0]; Mode = [-2,-1];
 Mesh = MeshAddConstraint (Mesh,Pos,Mode);
 [u1m,u2m] = PlaneStress(Mesh,1,0,{0,0},{0,0},{'fx','fy'});
 figure(12); FEMtrimesh(Mesh,u1m); xlabel('x'); ylabel('y'); zlabel('u_1')
 figure(13); FEMtrimesh(Mesh,u2m); xlabel('x'); ylabel('y'); zlabel('u_2')
 figure(14); FEMtrimesh(Mesh,sqrt(u1m.^2+u2m.^2)); xlabel('x'); ylabel('y'); zlabel('|u|')
 figure(15); clf; FEMtricontour(Mesh,sqrt(u1m.^2+u2m.^2)); xlabel('x');
 ylabel('y'); axis equal
```



Figure 69: The contours for the displacement $u=\sqrt{u_{1}^{2}+u_{2}^{2}}$, without and with constraints

### 5.14 Missing boundary constraints and null spaces

Examine a domain $\Omega \subset \mathbb{R}^{2}$ and minimize the elastic energy given by equation (22) with $\vec{f}=\vec{g}_{N}=\overrightarrow{0}$

$$
U(\vec{u})=\iint_{\Omega} \frac{1}{2} \frac{E}{\left(1-\nu^{2}\right)}\left\langle\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 2(1-\nu)
\end{array}\right] \cdot\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle d A
$$

i.e. no external forces and all of the boundary is free to move. Since the strains depend on derivatives of the displacement, the energy $U(\vec{u})$ will not change for constant displacement vectors $\vec{u}$. In addition the domain can be rotated without
deformation, i.e. without adding elastic energy. This leads to a three dimensional subspace on which the elastic energy vanishes. No reliable FEM algorithm will be able to solve the corresponding problem of minimizing the energy, since there is no unique minimum. To obtain a solution constraints have to be introduced, preventing the solid from moving in the $x$ and $y$ direction and preventing rotations.

As a consequence the global stiffness matrix $\mathbf{A}$ should have a three dimensional null space, describing constant displacements and rotations. Thus expect three very small eigenvalues. Constant displacement vectors $\vec{u}$ in $x$ or $y$ direction and rotations should satisfy

$$
\mathbf{A} \vec{u}=\overrightarrow{0} \quad \text { and } \quad \frac{1}{2}\langle\vec{u}, \mathbf{A} \vec{u}\rangle=0
$$

where the second expression corresponds to the elastic energy. These expressions are examined in the code below. The code verifies this on a trapezoidal domain with corners at $(0,0),(1,0),(1,2)$ and $(0,1)$.

- There are three eigenvalues very close to zero. Due to the finite accuracy of the arithmetic on the CPU the values are not exactly zero ${ }^{16}$. The fourth eigenvalue is considerably larger. This confirms the three dimensional null space of the matrix $\mathbf{A}$.
- The vector shift_x implements a translation of the solid in $x$ direction. Since $A * s h i f t \_x$ is approximately 0 the vector is in the null space of $\mathbf{A}$.
- With the vector shift -y the behavior in $y$ direction is examined.
- The displacement vector rot_vec examines a rotation of the solid, verifying that the energy is not increased by this rotation.
- The null space of the matrix $\mathbf{A}$ is spanned by the above three vectors.
- With the vector rand_vec examine an arbitrary displacement and observe that this vector is not in the null space and the energy is clearly increased.

```
 TestNullSpace.m
Mesh = CreateMeshTriangle('test',[1 0 -22;2 0 -22;2 2 -22; 1 1 -22],0.01);
E = 1e9; nu = 0.3; f = {0,0}; gD = {0,0}; gN = {0,0}; %%% set the parameters
if 0 %% plane stress
 [A,g] = PStressEquationM(Mesh,E,nu,f,gD,gD); %% determine matrix A
else %% axially symmetric
 [A,g] = AxiStressEquationM(Mesh, E, nu,f,gD,gD); %% determine matrix A
 endif
 A = (A+A')/2; %% assure that matrix is symmetric, it should be, but rounding errors
 EigenValues = eigs(A,6,'sa') %% find the smallest eigenvalues
 n = size(A,1)/2;
 shift_x = [ones(n,1);zeros(n,1)]; %% constant shift in x direction
 shift_x = shift_x/norm(shift_x);
 Norm_Shift_x = [norm(A*shift_x),shift_x'*A*shift_x/2]
 shift_y = [zeros(n,1);ones(n,1)]; %% constant shift in y direction
 shift_y = shift_y/norm(shift_y);
 Norm_Shift_y = [norm(A*shift_y),shift_y'*A*shift_y/2]
 x = Mesh.nodes(:,1); y = Mesh.nodes(:,2); %% at point [x,y] add displacement [-y,x]
 rot_vec = [-y;x]; %% a rotation
 rot_vec = rot_vec/norm(rot_vec);
Norm_Rotation = [norm(A*rot_vec),rot_vec'*A*rot_vec/2]
 rand_vec = [x.*y;y]; %% an arbitrary displacement vector
 rand_vec = rand_vec/norm(rand_vec);
 Norm_Random = [norm(A*rand_vec),rand_vec'*A*rand_vec/2]
```

[^11]```
-->
EigenValues = -5.9793e-07 -3.8610e-07 4.6269e-07 8.6494e+06 2.7384e+07 3.1225e+07
Norm_Shift_x = 3.1718e-07 7.8932e-10
Norm_Shift_y = 2.8492e-07 -1.9276e-08
Norm_Rotation = 3.3145e-07 2.2532e-09
Norm_Random = 5.1146e+07 5.3317e+06
```

Another option is the (newer) command PlaneStressEig (), which shows that the first 3 eigenvalues are (approximately) zero and the other eigenvalues are clearly positive.

```
lambda = PlaneStressEig(Mesh,W, nu, 1, 6)'
-->
lambda = -1.2637e-17 8.7877e-18 5.2417e-17 1.2456e-02 3.2735e-02 3.7392e-02
```

The zero eigenvalues could be removed by using additional constraints, as shown in the previous Section 5.13.2. The example of vibrations of a ring in Section 9.38 illustrates the same effect.

The situation changes for axially symmetric problems, i.e. the domain in the $x z$-plane is rotated about the z-axis to obtain the object in the space \mathbb{R}^{3}. Instead of PStressEquationM() use AxiStressEquationM() to generate the stiffness matrix \mathbf{A}. In the above code change the switch in the third line to obtain the results below.

- For axially symmetric problems moving the object up (in z-direction) does not lead to a deformation, thus there is at least a one-dimensional nullspace.
- Moving the intersection of the object with the plane $y=0$ in radial direction (in the x-direction) does deform the 3D object and thus increases the elastic energy.
- Rotating the intersection of the object with the plane $y=0$ does deform the 3D object and thus increases the elastic energy.

As a consequence there is only one eigenvalue (close to) zero, which is confirmed by the results below.

```
    EigenValues =1.7398e-06 4.0145e+06 7.3985e+06 1.8776e+07 5.0384e+07 5.4062e+07
    Norm_Shift_x = 4.0504e+07 4.8423e+06
    Norm_Shift_y = 6.0413e-07 -4.3348e-09
    Norm_Rotation = 2.3078e+07 1.0892e+06
    Norm_Random = 1.5364e+08 1.8131e+07
```


6 The Mathematics of the Algorithms for 2D FEM

In this section the mathematical background for the FEM method applied to the problems in Section 2 is explained. Most of the theory is used to solve the second order elliptic boundary value problem (1). The explanations are certainly not complete, but should provide enough information to ease the understanding of the code. For in-depth coverage consult one of the many books on FEM and/or numerical analysis. The starting point for this presentation are the lecture notes [Stah08]. Find a list of books on FEM in [Stah08, §0].

The organization of this section is as follows:
6.1 The definition of classical and weak solutions of boundary value problems is given and the connection to calculus of variations is shown.
6.2 The most often used triangular elements are presented.
6.3 The method of interpolation on triangles and Gauss integration is explained.
6.4 Element stiffness matrices for triangular elements of order 1 are carefully derived. The construction of the global stiffness matrix is explained. The integration of the different contributions is performed.
6.5 Element stiffness matrices for triangular elements of order 2 are carefully derived. The integration of the different contributions is performed.
6.6 Element stiffness matrices for triangular elements of order 3 are carefully derived. The integration of the different contributions is performed.
6.7 The theoretical convergence result is shown.
6.8 The algorithms to solve dynamic initial boundary value problems are presented.

- In Section 6.8.1 dynamic heat equations are examined, using the Crank-Nicolson approach.
- In Section 6.8.2 using eigenvalues to solve dynamic heat equations is explained.
- In Section 6.8.3 dynamic wave equations are examined, using an implicit approximation.
- In Section 6.8.4 using eigenvalues to solve dynamic wave equations is explained.
6.9 A few remarks on using the inverse power iteration to determine eigenvalues.

6.1 Classical solutions and weak solutions

A function $u=u(x, y)$ is called a classical solution of the BVP (1) iff it is twice differentiable and

$$
\begin{aligned}
& -\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u=f \quad \text { for } \quad(x, y) \in \Omega \\
& u=g_{1} \quad \text { for } \quad(x, y) \in \Gamma_{1} . \\
& \vec{n} \cdot(a \nabla u-u \vec{b})=g_{2}+g_{3} u \quad \text { for } \quad(x, y) \in \Gamma_{2}
\end{aligned}
$$

Multiply this equation with a smooth function ϕ, vanishing on Γ_{1}, and integrate over the domain Ω. Then use integration by parts to arrive at

$$
\begin{align*}
0 & =-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u-f \\
0 & =\iint_{\Omega} \phi\left(-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u-f\right) d A \\
& =\iint_{\Omega} \nabla \phi \cdot(a \nabla u-u \vec{b})+\phi\left(b_{0} u-f\right) d A-\int_{\Gamma} \phi(a \nabla u-u \vec{b}) \cdot \vec{n} d s \\
& =\iint_{\Omega} \nabla \phi \cdot(a \nabla u-u \vec{b})+\phi\left(b_{0} u-f\right) d A-\int_{\Gamma_{2}} \phi\left(g_{2}+g_{3} u\right) d s \tag{31}
\end{align*}
$$

Figure 70: Classical and weak solutions, minimizers and FEM

If a function u satisfies (31) it is called a weak solution of the above BVP. If there is no convection term $(\vec{b}=\overrightarrow{0})$ and some sign conditions for a and b_{0} are satisfied, the above is equivalent to minimizing the functional

$$
F(u)=\iint_{\Omega} \frac{1}{2} a(\nabla u)^{2}+\frac{1}{2} b_{0} u^{2}+f \cdot u d A-\int_{\Gamma_{2}} g_{2} u+\frac{1}{2} g_{3} u^{2} d s
$$

among all functions u satisfying the boundary condition $u=g_{1}$ on Γ_{1}. Figure 70 shows connections between classical solutions, weak solutions and the resulting system of (linear) equations for the finite element approach. The left branch in Figure 70 illustrates the usage of minimization and calculus of variations in the context of FEM algorithms. This approach is often called Ritz method, named after the Swiss mathematician Walter Ritz (1878-1909). The right branch in Figure 70 shows a Galerkin method, named after the Russian mathematician Boris Galerkin (1871-1945).

In the above equation integrals over the domain $\Omega \subset \mathbb{R}^{2}$ have to be computed. To discretize this process use a triangularization of the domain, using grid points $\left(x_{i}, y_{i}\right) \in$ $\Omega, 1 \leq i \leq n$. On each triangle T_{k} replace the function u by polynomials of degree 1 (or 2 , or 3). These polynomials are completely determined by their values at the three corners of the triangle (or corners and some points on the edges). Integrals over the full domain Ω are split up into integrals over each triangle and then a summation over all triangles

$$
\iint_{\Omega} \ldots d A=\sum_{k} \iint_{T_{k}} \ldots d A .
$$

The gradients of u and ϕ are replaced by the gradients of the piecewise polynomials. Each contribution has to be written in the form

$$
\iint_{T_{k}} \ldots d A=\left\langle\mathbf{A}_{k} \vec{u}_{k}, \vec{\phi}_{k}\right\rangle+\left\langle\mathbf{W}_{k} \vec{f}_{k}, \vec{\phi}_{k}\right\rangle,
$$

where \mathbf{A}_{k} is the element stiffness matrix.
The above integral will be rewritten as sum of the above integrations of the triangles, leading to the condition

$$
\langle\mathbf{A} \vec{u}+\mathbf{W} \vec{f}, \vec{\phi}\rangle=0 \quad \text { for all } \quad \vec{\phi} \in \mathbb{R}^{N}
$$

This condition is satisfied if \vec{u} solves the linear system $\mathbf{A} \vec{u}=-\mathbf{W} \vec{f}$. The matrix \mathbf{A} is called global stiffness matrix. It is this system of linear equations that will be solved to obtain an approximate solution of the boundary value problem (1).

6.2 A few triangular elements

There are different methods to construct finite elements on triangles. In Figure 71 find a graphical representation of a few commonly used elements.

- A solid dot at a position indicates that the value at this point is used as a DOF (Degree Of Freedom).
- A circle around a solid dot at a position indicates that the values of the first order partial derivatives are used as DOFs, e.g. in the Hermite elements.
- A double circle around a solid dot at a position indicates that the values, first and second order partial derivatives are used as DOFs, e.g. in the Argyris elements.
- A short line at a position indicates that the value of the normal derivative at this point is used as a DOF, e.g. in the Morley and Argyris elements.

An element is called

- C^{0} conforming if the resulting solutions are continuous across element boundaries.
- C^{1} conforming if the resulting solutions and the first order derivatives are continuous across element boundaries.

The codes in FEMoctave only use linear, quadratic and cubic elements.

Figure 71: A few triangular elements

	linear	quadratic	Morley	cubic	Hermite	Argyris
degrees of freedom DOF	3	6	6	10	10	21
polynomial basis	\mathbb{P}_{1}	\mathbb{P}_{2}	\mathbb{P}_{2}	\mathbb{P}_{3}	\mathbb{P}_{3}	\mathbb{P}_{5}
C^{0} conforming	yes	yes	no	yes	yes	yes
C^{1} conforming	no	no	quasi	no	quasi	yes

Table 13: Properties of triangular elements

6.3 Transformation, interpolation and Gauss integration

From the above it is obvious that integration over general triangles is important for the development of FEM algorithms. It turns out to be convenient to find integration methods for a standard triangle and then consider the general triangle by appropriate coordinate transformations.

6.3.1 Transformation of coordinates and integration over a general triangle

All of the necesssary integrals for the FEM method are integrals over general triangles E. These can be written as images of a standard triangle in a (ξ, ν)-plane, according to Figure 72. The transformation is given by

Figure 72: Transformation of the standard triangle Ω to a general triangle E

$$
\begin{aligned}
\binom{x}{y} & =\binom{x_{1}}{y_{1}}+\xi\binom{x_{2}-x_{1}}{y_{2}-y_{1}}+\nu\binom{x_{3}-x_{1}}{y_{3}-y_{1}} \\
& =\binom{x_{1}}{y_{1}}+\left[\begin{array}{cc}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right] \cdot\binom{\xi}{\nu}=\binom{x_{1}}{y_{1}}+\mathbf{T} \cdot\binom{\xi}{\nu}
\end{aligned}
$$

with the transformation matrix

$$
\mathbf{T}=\left[\begin{array}{cc}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right]
$$

By using $0<\xi, \nu<1$ with $\xi+\nu<1$ the standard triangle Ω is mapped onto the general triangle $E \subset \mathbb{R}^{2}$. If the coordinates (x, y) are given find the values of (ξ, ν) with the help of

$$
\binom{\xi}{\nu}=\mathbf{T}^{-1} \cdot\binom{x-x_{1}}{y-y_{1}}=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\begin{array}{cc}
y_{3}-y_{1} & -x_{3}+x_{1} \\
-y_{2}+y_{1} & x_{2}-x_{1}
\end{array}\right] \cdot\binom{x-x_{1}}{y-y_{1}}
$$

If a function $f(x, y)$ is to be integrated over the triangle E use the transformation

$$
\begin{equation*}
\iint_{E} f d A=\iint_{\Omega} f(\vec{x}(\xi, \nu))\left|\operatorname{det}\left(\frac{\partial(x, y)}{\partial(\xi, \nu)}\right)\right| d \xi d \nu=|\operatorname{det}(\mathbf{T})| \int_{0}^{1}\left(\int_{0}^{\nu} f(\vec{x}(\xi, \nu)) d \xi\right) d \nu \tag{32}
\end{equation*}
$$

The Jaccobi determinant is given by

$$
\left|\operatorname{det}\left(\frac{\partial(x, y)}{\partial(u, v)}\right)\right|=|\operatorname{det}(\mathbf{T})|=\left|\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(x_{3}-x_{1}\right)\left(y_{2}-y_{1}\right)\right|
$$

If the orientation of the triangle is positive, then $\operatorname{det}(\mathbf{T})$ will be positive. Since the area of the standard triangle Ω equals $\frac{1}{2}$ find

$$
\text { area of } E=\frac{1}{2}|\operatorname{det} \mathbf{T}|
$$

For an efficient numerical integration over the standard triangle Ω choose integration points $\vec{g}_{j} \in \Omega$ and corresponding weights w_{j} for $j=1,2, \ldots, m$ and then work with the values of the function at those points, i.e. seek an approximation of the integral of the form

$$
\begin{equation*}
\iint_{\Omega} f(\vec{\xi}) d A \approx \sum_{j=1}^{m} w_{j} f\left(\vec{g}_{j}\right) \tag{33}
\end{equation*}
$$

The integration points \vec{g}_{j} and weights w_{j} have to be chosen, such that the approximation error is as small as possible. Required are three essential conditions for the integration method:

- If a sample point is used in a Gauss integration, then all other points obtainable by permuting the three corners of the triangle must appear and with identical weight.
- All sample points \vec{g}_{j} must be inside the triangle, or on the triangle boundary.
- All weights w_{j} must be positive.

6.3.2 Gauss integration on the standard triangle with $\mathbf{3}$ Gauss points

In Figure 73 consider the three points at $\vec{g}_{1}=\frac{1}{2}(\lambda, \lambda), \vec{g}_{2}=(1-\lambda, \lambda / 2)$ and $\vec{g}_{1}=(\lambda / 2,1-\lambda)$. Find optimal values for the parameters λ and w such that polynomials of degree as high as possible are integrated exactly by

$$
\iint_{\Delta} f d A \approx w\left(f\left(\vec{g}_{1}\right)+f\left(\vec{g}_{2}\right)+f\left(\vec{g}_{3}\right)\right) .
$$

Figure 73: Gauss integration of order 2 on the standard triangle, using 3 integration points

To determine the optimal values determine a solution of a nonlinear system of 2 equations for the unknowns λ and w. Require that ξ^{k} for $0 \leq k \leq 2$ be integrated exactly. This leads to the solution $\lambda=1 / 3$ and the weight $w=1 / 6$. This approximate integration yields the exact results for polynomials f up to degree 2 . Thus for a single triangle with diameter h, i.e. an area of the order h^{2}, the integration error for smooth functions is of the order $h^{3} \cdot h^{2}=h^{5}$. When dividing a large domain in sub-triangles of size h this leads to a total integration error of the order h^{3}.

The Gauss points and weights are given by

$$
\mathbf{G}=\left[\begin{array}{cc}
1 / 6 & 1 / 6 \\
2 / 3 & 1 / 6 \\
1 / 2 & 2 / 3
\end{array}\right] \quad \text { and } \quad w=\frac{1}{6} .
$$

For a general triangle the Gauss points are located at

$$
\mathbf{X}_{G}=\binom{x_{1}}{y_{1}}+\left[\begin{array}{cc}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right] \cdot \mathbf{G}^{T}=\binom{x_{1}}{y_{1}}+\mathbf{T} \cdot \mathbf{G}^{T}
$$

This integration scheme will be used for linear elements ${ }^{17}$.

6.3.3 Gauss integration on the standard triangle with 7 Gauss points

As a second method use the points $g_{1}=\left(\lambda_{1}, \lambda_{1}\right)$ and $g_{4}=\left(\lambda_{2}, \lambda_{2}\right)$ along the diagonal $\xi=\nu$. Similarly use two more points along each connecting straight line from a corner of the triangle to the midpoint of the opposite edge. This leads to a total of 6 integration points where groups of 3 have the same weight. Finally add the midpoint with weight w_{3}. This is illustrated in Figure 74. The result is a 7×2 matrix \mathbf{G} containing in each row the coordinates of one integration point \vec{g}_{j} and a vector \vec{w} with the corresponding integration weights. To determine the optimal values solve a nonlinear system of 5 equations for the unknowns $\lambda_{1}, \lambda_{2}, w_{1}, w_{2}$ and w_{3}. Require that ξ^{k} for $0 \leq k \leq 5$ be integrated exactly. Find details in [Stah08]. Pick a solution of the resulting nonlinear system with $0<\lambda_{1}<\lambda_{2}<1$ (points inside the triangle) and positive weights w_{1}, w_{2} and w_{3}.

This approximate integration yields the exact results for polynomials f up to degree 5 . Thus for one triangle with diameter h and an area of the order h^{2} the integration error for smooth functions is of the order $h^{6} \cdot h^{2}=h^{8}$. When dividing a large domain in sub-triangles of size h this leads to a total integration error of the order h^{6}. For most problems this error will be considerably smaller than the approximation error of the FEM method and it is reasonably safe to ignore the error.

[^12]

Figure 74: Gauss integration of order 5 on the standard triangle, using 7 integration points

The optimal choice of Gauss points and integration weights is given by ${ }^{18}$

$$
\mathbf{G}=\left[\begin{array}{cc}
\lambda_{1} / 2 & \lambda_{1} / 2 \tag{34}\\
1-\lambda_{1} & \lambda_{1} / 2 \\
\lambda_{1} / 2 & 1-\lambda_{1} \\
\lambda_{2} / 2 & \lambda_{2} / 2 \\
1-\lambda_{2} & \lambda_{2} / 2 \\
\lambda_{2} / 2 & 1-\lambda_{2} \\
1 / 3 & 1 / 3
\end{array}\right] \approx\left[\begin{array}{cc}
0.101287 & 0.101287 \\
0.797427 & 0.101287 \\
0.101287 & 0.797427 \\
0.470142 & 0.470142 \\
0.059716 & 0.470142 \\
0.470142 & 0.059716 \\
0.333333 & 0.333333
\end{array}\right] \quad \text { and } \vec{w}=\left(\begin{array}{c}
w_{1} \\
w_{1} \\
w_{1} \\
w_{2} \\
w_{2} \\
w_{2} \\
w_{3}
\end{array}\right) \approx\left(\begin{array}{l}
0.0629696 \\
0.0629696 \\
0.0629696 \\
0.0661971 \\
0.0661971 \\
0.0661971 \\
0.1125000
\end{array}\right) .
$$

Using the transformation results in this section compute the coordinates \mathbf{X}_{G} for the Gauss integration in a general triangle by

$$
\mathbf{X}_{G}=\binom{x_{1}}{y_{1}}+\left[\begin{array}{cc}
x_{2}-x_{1} & x_{3}-x_{1} \tag{35}\\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right] \cdot \mathbf{G}^{T}=\binom{x_{1}}{y_{1}}+\mathbf{T} \cdot \mathbf{G}^{T} .
$$

This notation is used to compute the Gauss points for a given triangulation of the domain, i.e. for the mesh.

6.4 Construction of first order elements

Assume that the function u is linear on each triangle T_{k}, thus determined by the values at the three corners. Then all integrals in expression (31) have to be examined. For the linear elements use the integration with 3 Gauss nodes in the triangle, as described in Section 6.3.2. All contributions in (31)

$$
0=\iint_{\Omega} \nabla \phi \cdot(a \nabla u-u \vec{b})+\phi\left(b_{0} u-f\right) d A-\int_{\Gamma_{2}} \phi\left(g_{2}+g_{3} u\right) d s
$$

have to be transformed into

$$
\begin{equation*}
0=\langle\vec{\phi}, \mathbf{A} \vec{u}+\mathbf{W} \vec{f}\rangle . \tag{36}
\end{equation*}
$$

By integration over one triangle E find

$$
\iint_{E} \nabla \phi \cdot(a \nabla u-u \vec{b})+\phi\left(b_{0} u-f\right) d A \approx\left\langle\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{A}_{E}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle+\left\langle\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{W}_{E} \vec{f}_{E}\right\rangle
$$

The matrix \mathbf{A}_{E} is the element stiffness matrix and $\mathbf{W}_{E} \vec{f}_{E}$ the corresponding vector. These entries have to be added in the correct rows and columns of the global stiffness matrix. For this examine the local and global numbering of nodes in Figure 75. In each triangle the three corners are numbered by 1,2 and 3 , but in the global mesh (consisting of many triangles)

$$
\begin{array}{ccc}
\text { local } & \longleftrightarrow & \text { global } \\
\text { triangle } & \longleftrightarrow & \text { mesh } \\
1 & \longleftrightarrow & i \\
2 & \longleftrightarrow & k \\
3 & \longleftrightarrow & j
\end{array}
$$

Figure 75: Local and global numbering of nodes
they are numbered by i, k and j. Thus the entries in the element stiffness matrix \mathbf{A}_{E} have to be added to rows/columns i, k and j in the global stiffness matrix \mathbf{A}.

$$
\begin{aligned}
& \text { col i col j col k }
\end{aligned}
$$

Similar procedures have to be appplied to the vectors.

6.4.1 Linear interpolation on a triangle

If the values of the function $\phi(x, y)$ at the three corners are given by ϕ_{1}, ϕ_{2} and ϕ_{3} then the values $\phi\left(\vec{g}_{i}\right)$ are given by

$$
\begin{aligned}
\phi\left(\vec{g}_{1}\right) & =\frac{2}{3} \phi_{1}+\frac{1}{6} \phi_{2}+\frac{1}{6} \phi_{3} \\
\phi\left(\vec{g}_{2}\right) & =\frac{1}{6} \phi_{1}+\frac{2}{3} \phi_{2}+\frac{1}{6} \phi_{3} \\
\phi\left(\vec{g}_{3}\right) & =\frac{1}{6} \phi_{1}+\frac{1}{6} \phi_{2}+\frac{2}{3} \phi_{3}
\end{aligned}
$$

or using a matrix notation

$$
\left(\begin{array}{l}
\phi\left(\vec{g}_{1}\right) \\
\phi\left(\vec{g}_{3}\right) \\
\phi\left(\vec{g}_{3}\right)
\end{array}\right)=\frac{1}{6}\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)=\mathbf{M} \vec{\phi}
$$

This interpolation of the values from the nodes of the triangle to the Gauss points \vec{g}_{i} is independent of shape and size of the triangle.

For second order elements the construction of this interpolation matrix is performed using the basis functions (see Section 6.5.1). For the linear case use the simpler basis functions

$$
\vec{\Phi}(\xi, \nu)=\left(\begin{array}{c}
\Phi_{1}(\xi, \nu) \\
\Phi_{2}(\xi, \nu) \\
\Phi_{3}(\xi, \nu)
\end{array}\right)=\left(\begin{array}{c}
1-\xi-\nu \\
\xi \\
\nu
\end{array}\right)
$$

[^13]and a linear interpolation of a function given at the nodes is given by
$$
f(\xi, \nu)=\sum_{i=1}^{3} f_{i} \Phi_{i}(\xi, \nu) .
$$

Since

$$
\frac{\partial}{\partial \xi} \vec{\Phi}(\xi, \nu)=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad \frac{\partial}{\partial \nu} \vec{\Phi}(\xi, \nu)=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

observe that the gradient does not depend on the position within the triangle.

6.4.2 Integration of $f \phi$

Examine different methods to give the function f : either by providing the values at the Gauss points, or by using the values at the nodes.

- If the values of the function f at the Gauss points \vec{g}_{i} are denoted by f_{i} then this integral is approximated by

$$
\begin{aligned}
\iint_{E} f \phi d A & \approx w 2 \operatorname{area}(E)\left(f_{1} \phi\left(\vec{g}_{1}\right)+f_{2} \phi\left(\vec{g}_{2}\right)+f_{3} \phi\left(\vec{g}_{3}\right)\right) \\
& =\frac{2 \operatorname{area}(E)}{6}\langle\mathbf{M} \vec{\phi}, \vec{f}\rangle=\frac{\operatorname{area}(E)}{3}\left\langle\vec{\phi}, \mathbf{M}^{T} \vec{f}\right\rangle
\end{aligned}
$$

Thus find one contribution to (36).

- If the values of the function f at the nodes are denoted by f_{i} then first determine the values at the Gauss points by a linear interpolation. Then integrate as above, leading to the approximation

$$
\iint_{E} f \phi d A \approx \frac{2 \operatorname{area}(E)}{6}\langle\mathbf{M} \vec{\phi}, \mathbf{M} \vec{f}\rangle=\frac{\operatorname{area}(E)}{3}\left\langle\vec{\phi}, \mathbf{M}^{T} \mathbf{M} \vec{f}\right\rangle .
$$

The matrix

$$
\mathbf{M}^{T} \mathbf{M}=\frac{1}{36}\left[\begin{array}{ccc}
18 & 9 & 9 \\
9 & 18 & 9 \\
9 & 9 & 18
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

is independent on the shape and size of the element (triangle). Thus find one contribution to (36).

6.4.3 Integration of $b_{0} u \phi$

Since the values of the functions u and ϕ are known at the nodes interpolate both functions and then use the values of the function $b_{0}(x, y)$ at the Gauss nodes to find

$$
\begin{aligned}
\iint_{E} b_{0} u \phi d A & \approx w 2 \operatorname{area}(E) \sum_{i=1}^{3} b_{0}\left(\vec{g}_{i}\right) u\left(\vec{g}_{i}\right) \phi\left(\vec{g}_{1}\right) \\
& =\frac{2 \operatorname{area}(E)}{6}\langle\mathbf{M} \vec{\phi}, \operatorname{diag}(\vec{b}) \mathbf{M} \vec{u}\rangle=\frac{\operatorname{area}(E)}{3}\left\langle\vec{\phi}, \mathbf{M}^{T} \operatorname{diag}\left(\vec{b}_{0}\right) \mathbf{M} \vec{u}\right\rangle
\end{aligned}
$$

where

$$
\operatorname{diag} \vec{b}_{0}=\left[\begin{array}{ccc}
b_{0}\left(\vec{g}_{1}\right) & 0 & 0 \\
0 & b_{0}\left(\vec{g}_{2}\right) & 0 \\
0 & 0 & b_{0}\left(\vec{g}_{3}\right)
\end{array}\right] .
$$

If $b_{0}(x, y)$ happens to be a constant, then the above may be simplified to

$$
\iint_{E} b_{0} u \phi d A \approx b_{0} \frac{\operatorname{area}(E)}{12}\left\langle\vec{\phi},\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \vec{u}\right\rangle .
$$

Thus find another contribution to (36).

6.4.4 Integration of $a \nabla u \cdot \nabla \phi$

Since the functions u and ϕ are linear on each triangle, we use the fact that the gradients are constant on each triangle. The gradient may be determined with the help of a normal vector of the plane passing through the three points

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
u_{1}
\end{array}\right) \quad, \quad\left(\begin{array}{c}
x_{2} \\
y_{2} \\
u_{2}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
x_{3} \\
y_{3} \\
u_{3}
\end{array}\right)
$$

A normal vector \vec{n} is given by the vector product

$$
\vec{n}=\left(\begin{array}{c}
x_{2}-x_{1} \\
y_{2}-y_{1} \\
u_{2}-u_{1}
\end{array}\right) \times\left(\begin{array}{c}
x_{3}-x_{1} \\
y_{3}-y_{1} \\
u_{3}-u_{1}
\end{array}\right)=\left(\begin{array}{c}
+\left(y_{2}-y_{1}\right) \cdot\left(u_{3}-u_{1}\right)-\left(u_{2}-u_{1}\right) \cdot\left(y_{3}-y_{1}\right) \\
-\left(x_{2}-x_{1}\right) \cdot\left(u_{3}-u_{1}\right)+\left(u_{2}-u_{1}\right) \cdot\left(x_{3}-x_{1}\right) \\
+\left(x_{2}-x_{1}\right) \cdot\left(y_{3}-y_{1}\right)-\left(y_{2}-y_{1}\right) \cdot\left(x_{3}-x_{1}\right)
\end{array}\right)
$$

The third component of this vector equals twice the oriented ${ }^{19}$ area of the triangle. To obtain the gradient in the first two components the vector has to be normalized, such that the third component equals -1 . Find

$$
\nabla u=\binom{\frac{d u}{\partial x}}{\frac{d u}{\partial y}}=\frac{-1}{2 \operatorname{area}(E)}\binom{+\left(y_{2}-y_{1}\right) \cdot\left(u_{3}-u_{1}\right)-\left(u_{2}-u_{1}\right) \cdot\left(y_{3}-y_{1}\right)}{-\left(x_{2}-x_{1}\right) \cdot\left(u_{3}-u_{1}\right)+\left(u_{2}-u_{1}\right) \cdot\left(x_{3}-x_{1}\right)} .
$$

This formula can be written in the form

$$
\nabla u=\frac{-1}{2 \operatorname{area}(E)}\left[\begin{array}{ccc}
\left(y_{3}-y_{2}\right) & \left(y_{1}-y_{3}\right) & \left(y_{2}-y_{1}\right) \tag{37}\\
\left(x_{2}-x_{3}\right) & \left(x_{3}-x_{1}\right) & \left(x_{1}-x_{2}\right)
\end{array}\right] \cdot\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\frac{-1}{2 \operatorname{area}(E)} \mathbf{G} \cdot\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)
$$

and thus

$$
\langle\nabla \phi, \nabla u\rangle=\frac{1}{4 \operatorname{area}(E)^{2}}\left\langle\mathbf{G}\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{G}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle=\frac{1}{4 \operatorname{area}(E)^{2}}\left\langle\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{G}^{T} \cdot \mathbf{G}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle .
$$

If a_{i} are the values of the function $a(x, y)$ at the Gauss points \vec{g}_{i} find

$$
\iint_{E} a \nabla \phi \cdot \nabla u d A \approx \frac{a_{1}+a_{2}+a_{3}}{12 \operatorname{area}(E)}\left\langle\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{G}^{T} \cdot \mathbf{G}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle .
$$

As an exercise one can verify that the matrix $\mathbf{G}^{T} \cdot \mathbf{G}$ is symmetric and positive semi-definite. The expression vanishes for constant vectors, i.e. for vanishing gradients.

[^14]
6.4.5 Integration of $u \vec{b} \cdot \nabla \phi$

Since the gradient of ϕ is constant on each of the triangles use

$$
\binom{\phi_{x}}{\phi_{y}}=\nabla \phi=\frac{-1}{2 \operatorname{area}(E)} \mathbf{G} \cdot\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)=\frac{-1}{2 \operatorname{area}(E)}\left[\begin{array}{c}
\mathbf{G}_{x} \\
\mathbf{G}_{y}
\end{array}\right] \cdot\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

where

$$
\mathbf{G}_{\mathbf{x}}=\left[\begin{array}{lll}
y_{3}-y_{2} & y_{1}-y_{3} & y_{2}-y_{1}
\end{array}\right] \quad \text { and } \quad \mathbf{G}_{\mathbf{y}}=\left[\begin{array}{lll}
x_{2}-x_{3} & x_{3}-x_{1} & x_{1}-x_{2}
\end{array}\right]
$$

Let $b_{1, i}$ be the values of the first component of \vec{b} at the Gauss nodes and find

$$
\begin{aligned}
\iint_{E} u b_{1} \phi_{x} d A & \approx \frac{\operatorname{area}(E)}{3} \sum_{i=1}^{3} u\left(\vec{g}_{i}\right) b_{1, i} \phi_{x, i} \\
= & \frac{-\operatorname{area}(E)}{3 \cdot 2 \operatorname{area}(E)}\left\langle\left[\begin{array}{l}
\mathbf{G}_{x} \\
\mathbf{G}_{x} \\
\mathbf{G}_{x}
\end{array}\right]\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right),\left[\begin{array}{ccc}
b_{1,1} & 0 & 0 \\
0 & b_{1,2} & 0 \\
0 & 0 & b_{1,3}
\end{array}\right] \mathbf{M}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle \\
= & \frac{-1}{6}\left\langle\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right),\left[\begin{array}{lll}
\mathbf{G}_{x}^{T} & \mathbf{G}_{x}^{T} & \mathbf{G}_{x}^{T}
\end{array}\right]\left[\begin{array}{ccc}
b_{1,1} & 0 & 0 \\
0 & b_{1,2} & 0 \\
0 & 0 & b_{1,3}
\end{array}\right] \mathbf{M}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle \\
= & \frac{-1}{6}\left\langle\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{G}_{x}^{T}\left[\begin{array}{ll}
b_{1,1} & b_{1,2} \\
b_{1,3}
\end{array}\right] \mathbf{M}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle \\
= & \frac{-1}{6}\left\langle\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right),\left[\begin{array}{lll}
b_{1,1}\left(y_{3}-y_{2}\right) & b_{1,2}\left(y_{3}-y_{2}\right) & b_{1,3}\left(y_{3}-y_{2}\right) \\
b_{1,1}\left(y_{1}-y_{3}\right) & b_{1,2}\left(y_{1}-y_{3}\right) & b_{1,3}\left(y_{1}-y_{3}\right) \\
b_{1,1}\left(y_{2}-y_{1}\right) & b_{1,2}\left(y_{2}-y_{1}\right) & b_{1,3}\left(y_{2}-y_{1}\right)
\end{array}\right] \mathbf{M}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle .
\end{aligned}
$$

If the values of the second component of \vec{b} at the Gauss nodes are given by $b_{2, i}$ find by similar computations

$$
\begin{aligned}
\iint_{E} u b_{2} \phi_{y} d A & \approx \frac{-\operatorname{area}(E)}{3} \sum_{i=1}^{3} u\left(\vec{g}_{i}\right) b_{2, i} \phi_{y, i} \\
& =\frac{-1}{6}\left\langle\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{G}_{y}^{T}\left[\begin{array}{lll}
b_{2,1} & b_{2,2} & b_{2,3}
\end{array}\right] \mathbf{M}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle \\
& =\frac{-1}{6}\left\langle\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right),\left[\begin{array}{lll}
b_{2,1}\left(x_{2}-x_{3}\right) & b_{2,2}\left(x_{2}-x_{3}\right) & b_{2,3}\left(x_{2}-x_{3}\right) \\
b_{2,1}\left(x_{3}-x_{1}\right) & b_{2,2}\left(x_{3}-x_{1}\right) & b_{2,3}\left(x_{3}-x_{1}\right) \\
b_{2,1}\left(x_{1}-x_{2}\right) & b_{2,2}\left(x_{1}-x_{2}\right) & b_{2,3}\left(x_{1}-x_{2}\right)
\end{array}\right] \mathbf{M}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle .
\end{aligned}
$$

This leads to two more contributions to (36).

6.4.6 Integration over boundary segments

In expression (31) compute integrals over the boundary

$$
\int_{\Gamma_{2}} \phi\left(g_{2}+g_{3} u\right) d s
$$

For triangular domains the boundary consists of straight line segments. Replace the integral by a sum of line integrals and use a Gauss integration. Based on the two endpoints \vec{x}_{1} and \vec{x}_{2} use the values at the two Gauss integration points ${ }^{20}$

$$
\begin{aligned}
& \vec{p}_{1}=\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{2}\right)-\frac{1}{2 \sqrt{3}}\left(\vec{x}_{2}-\vec{x}_{1}\right) \\
& \vec{p}_{2}=\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{2}\right)+\frac{1}{2 \sqrt{3}}\left(\vec{x}_{2}-\vec{x}_{1}\right) .
\end{aligned}
$$

Polynomials up to degree 3 are integrated exactly, thus the error is proportional to h^{4}. By linear interpolation between the points \vec{x}_{1} and \vec{x}_{2} find the values of the function u at the Gauss points to be

$$
\begin{aligned}
& u\left(\vec{p}_{1}\right)=(1-\alpha) u_{1}+\alpha u_{2} \\
& u\left(\vec{p}_{2}\right)=\alpha u_{1}+(1-\alpha) u_{2}
\end{aligned}
$$

or

$$
\binom{u\left(\vec{p}_{1}\right)}{u\left(\vec{p}_{2}\right)}=\left[\begin{array}{cc}
(1-\alpha) & \alpha \\
\alpha & (1-\alpha)
\end{array}\right]\binom{u_{1}}{u_{2}}
$$

where $\alpha=\frac{1-1 / \sqrt{3}}{2} \approx 0.211325$. Using the length $L=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ this leads to the approximations

$$
\begin{aligned}
\int \phi g_{2} d s & \approx \frac{L}{2}\left\langle\left[\begin{array}{cc}
(1-\alpha) & \alpha \\
\alpha & (1-\alpha)
\end{array}\right]\binom{\phi_{1}}{\phi_{2}},\binom{g_{2}\left(\vec{p}_{1}\right)}{g_{2}\left(\vec{p}_{2}\right)}\right\rangle \\
& =\frac{L}{2}\left\langle\binom{\phi_{1}}{\phi_{2}},\left[\begin{array}{cc}
(1-\alpha) & \alpha \\
\alpha & (1-\alpha)
\end{array}\right]\binom{g_{2}\left(\vec{p}_{1}\right)}{g_{2}\left(\vec{p}_{2}\right)}\right\rangle \\
\int \phi g_{3} u d s & \approx \frac{L}{2}\left\langle\left[\begin{array}{cc}
(1-\alpha) & \alpha \\
\alpha & (1-\alpha)
\end{array}\right]\binom{\phi_{1}}{\phi_{2}},\left[\begin{array}{cc}
g_{3}\left(\vec{p}_{1}\right) & 0 \\
0 & g_{3}\left(\vec{p}_{2}\right)
\end{array}\right]\left[\begin{array}{cc}
(1-\alpha) & \alpha \\
\alpha & (1-\alpha)
\end{array}\right]\binom{u_{1}}{u_{2}}\right\rangle \\
& =\frac{L}{2}\left\langle\binom{\phi_{1}}{\phi_{2}},\left[\begin{array}{cc}
(1-\alpha) & \alpha \\
\alpha & (1-\alpha)
\end{array}\right]\left[\begin{array}{cc}
(1-\alpha) g_{3}\left(\vec{p}_{1}\right) & \alpha g_{3}\left(\vec{p}_{1}\right) \\
\alpha g_{3}\left(\vec{p}_{2}\right) & (1-\alpha) g_{3}\left(\vec{p}_{2}\right)
\end{array}\right]\binom{u_{1}}{u_{2}}\right\rangle \\
& =\frac{L}{2}\left\langle\binom{\phi_{1}}{\phi_{2}},\left[\begin{array}{ccc}
(1-\alpha)^{2} g_{3}\left(\vec{p}_{1}\right)+\alpha^{2} g_{3}\left(\vec{p}_{2}\right) & (1-\alpha) \alpha\left(g_{3}\left(\vec{p}_{1}\right)+g_{3}\left(\vec{p}_{2}\right)\right) \\
(1-\alpha) \alpha\left(g_{3}\left(\vec{p}_{1}\right)+g_{3}\left(\vec{p}_{2}\right)\right) & \alpha^{2} g_{3}\left(\vec{p}_{1}\right)+(1-\alpha)^{2} g_{3}\left(\vec{p}_{2}\right)
\end{array}\right]\binom{u_{1}}{u_{2}}\right\rangle
\end{aligned}
$$

The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the second expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the function to be integrated is a polynomial of degree 3 , or less. If h is the typical length of an edge then the error is of the order h^{5} for one line segment and thus of order h^{4} for the total boundary. This boundary integration is used for first order elements.

The second expression is of the form

$$
\int \phi g_{3} u d s \approx\langle\vec{\phi}, \mathbf{B} \vec{u}\rangle=\left\langle\binom{\phi_{2}}{\phi_{2}},\left[\begin{array}{ll}
b_{11} & b_{12} \tag{38}\\
b_{21} & b_{22}
\end{array}\right]\binom{u_{1}}{u_{2}}\right\rangle
$$

and its effect on the linear system $\mathbf{A} \vec{u}+\mathbf{W} \vec{f}=\overrightarrow{0}$ to be solved depends on nodes being on the Dirichlet part of the boundary.

- If u_{1} and u_{2} are both free, i.e. not on the Dirichlet section, then all entries of the matrix \mathbf{B} have to be added to the global stiffness matrix A.

$$
\begin{aligned}
& { }^{20} \text { To derive the formula integrate } 1, t, t^{2} \text { and } t^{3} \text { over the interval }[-1,1] \text {. } \\
& \begin{aligned}
\int_{-1}^{+1} f(t) d t & =w_{1} f(-\xi)+w_{1} f(+\xi) \\
\int_{-1}^{+1} 1 d t=2 & =w_{1} 1+w_{1} 1 \Longrightarrow w_{1}=1
\end{aligned} \\
& \int_{-1}^{+1} t d t=0=-w_{1} \xi+w_{1} \xi=0 \\
& \int_{-1}^{+1} t^{2} d t=\frac{2}{3}=+w_{1} \xi^{2}+w_{1} \xi^{2} \quad \Longrightarrow \quad \xi=\sqrt{1 / 3} \\
& \int_{-1}^{+1} t^{3} d t=0=-w_{1} \xi^{3}+w_{1} \xi^{3}=0
\end{aligned}
$$

Thus t^{4} is not integrated exactly and the error is proportional to h^{4}.

- If u_{1} and u_{2} are on the Dirichlet section, then nothing has to be added to \mathbf{A} and \vec{f}.
- If u_{1} is free and u_{2} is on the Dirichlet section, then only the first expression

$$
b_{11} u_{1}+b_{12} u_{2}=b_{11} u_{1}+b_{12} d_{2}
$$

has to be added. d_{2} is the Dirichlet value at the position of u_{2}. Then b_{11} has to be taken into account in \mathbf{A} and $b_{12} d_{2}$ has to be added to $\mathbf{W} \vec{f}$.

- If u_{2} is free and u_{1} is on the Dirichlet section, then only the second expression $b_{21} u_{1}+b_{22} u_{2}=b_{21} d_{1}+b_{22} u_{2}$ has to be added. d_{1} is the Dirichlet value at the position of u_{1}. Then b_{22} has to be taken into account in \mathbf{A} and $b_{12} d_{1}$ has to be added to $\mathbf{W} \vec{f}$.

6.5 Construction of second order elements

In this section the construction of the element stiffness matrix and vector for triangular elements or order 2 is examined. The ideas are very similar to Section 6.4 for linear basis functions, but using a bit more mathematics is required. Again all contributions in (31)

$$
0=\iint_{\Omega} \nabla \phi \cdot(a \nabla u-u \vec{b})+\phi\left(b_{0} u-f\right) d A-\int_{\Gamma_{2}} \phi\left(g_{2}+g_{3} u\right) d s
$$

have to be transformed into

$$
0=\langle\vec{\phi}, \mathbf{A} \vec{u}+\mathbf{W} \vec{f}\rangle .
$$

For second order element a general quadratic function is used on each of the triangles in the mesh. There are 6 linearly independent polynomials of degree 2 or less, namely $1, x, y, x^{2}, y^{2}$ and $x \cdot y$.

6.5.1 The basis functions for a second order element and quadratic interpolation

Examine the standard triangle Ω in Figure 72 with the values of a function $f(\xi, \nu)$ at the corners and at the midpoints of the edges. Use the numbering as shown in Figure 72. The parameters ξ and ν at the nodes are given by Table 14. Construct polynomials $\phi_{i}(\xi, \nu)$ of degree 2 , such that

$$
\Phi_{i}\left(\xi_{j}, \nu_{j}\right)=\delta_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

i.e. each basis function is equal to 1 at one of the nodes and vanishes on all other nodes. These basis polynomials are given by

node i	1	2	3	4	5	6
ξ_{i}	0	1	0	$\frac{1}{2}$	0	$\frac{1}{2}$
ν_{i}	0	0	1	$\frac{1}{2}$	$\frac{1}{2}$	0

Table 14: Coordinates of the nodes in the standard quadratic triangle

$$
\vec{\Phi}(\xi, \nu)=\left(\begin{array}{c}
\Phi_{1}(\xi, \nu) \tag{39}\\
\Phi_{2}(\xi, \nu) \\
\Phi_{3}(\xi, \nu) \\
\Phi_{4}(\xi, \nu) \\
\Phi_{5}(\xi, \nu) \\
\Phi_{6}(\xi, \nu)
\end{array}\right)=\left(\begin{array}{c}
(1-\xi-\nu)(1-2 \xi-2 \nu) \\
\xi(2 \xi-1) \\
\nu(2 \nu-1) \\
4 \xi \nu \\
4 \nu(1-\xi-\nu) \\
4 \xi(1-\xi-\nu)
\end{array}\right)
$$

and find their graphs in Figure 76.

Figure 76: Basis functions for second order triangular elements

Any quadratic polynomial f on the standard triangle Ω can be written as linear combination of the basis functions by using

$$
\begin{equation*}
f(\xi, \nu)=\sum_{i=1}^{6} f\left(\xi_{i}, \nu_{i}\right) \Phi_{i}(\xi, \nu)=\sum_{i=1}^{6} f_{i} \Phi_{i}(\xi, \nu) \tag{40}
\end{equation*}
$$

This is the formula to apply a quadratic interpolation on the triangle, using the values f_{i} of the function at the nodes. To use this interpolation for a given point (x, y) in the triangle E in Figure 72 determine the correct values of the parameters ξ and ν, i.e. solve

$$
\binom{x}{y}=\binom{x_{1}}{y_{1}}+\xi\binom{x_{2}-x_{1}}{y_{2}-y_{1}}+\nu\binom{x_{3}-x_{1}}{y_{3}-y_{1}}
$$

This is equivalent to the linear system

$$
\mathbf{T}\binom{\xi}{\nu}=\left[\begin{array}{cc}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right]\binom{\xi}{\nu}=\binom{x-x_{1}}{y-y_{1}} .
$$

Since the 2×2 matrix \mathbf{T} is invertible find

$$
\binom{\xi}{\nu}=\mathbf{T}^{-1} \cdot\binom{x-x_{1}}{y-y_{1}}=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\begin{array}{cc}
y_{3}-y_{1} & -x_{3}+x_{1} \\
-y_{2}+y_{1} & x_{2}-x_{1}
\end{array}\right] \cdot\binom{x-x_{1}}{y-y_{1}} .
$$

6.5.2 Determine values at the Gauss points and apply Gauss integration

Use equation (35) to determine the coordinates of the seven Gauss points. Then a function to be integrated can be evaluated at these Gauss points. Computing the values of the basis functions $\Phi_{i}(\xi, \nu)$ at the Gauss points \vec{g}_{j} by $m_{j, i}=\Phi_{i}\left(\vec{g}_{j}\right)$ and write

$$
f\left(\vec{g}_{j}\right)=\sum_{i=1}^{6} f_{i} \Phi_{i}\left(\vec{g}_{j}\right)=\sum_{i=1}^{6} m_{j, i} f_{i}
$$

or using a matrix notation $\mathbf{M} \in \mathbb{R}^{7 \times 6}$

$$
\begin{align*}
\left(\begin{array}{c}
f\left(\vec{g}_{1}\right) \\
f\left(\vec{g}_{2}\right) \\
\vdots \\
f\left(\vec{g}_{7}\right)
\end{array}\right) & =\left[\begin{array}{cccc}
m_{1,1} & m_{1,2} & \cdots & m_{1,6} \\
m_{2,1} & m_{2,2} & \cdots & m_{2,6} \\
\vdots & \vdots & \ddots & \vdots \\
m_{7,1} & m_{7,2} & \cdots & m_{7,6}
\end{array}\right] \cdot\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{6}
\end{array}\right)=\mathbf{M} \cdot \vec{f} \tag{41}\\
& \approx\left[\begin{array}{ccccccc}
+0.474353 & -0.080769 & -0.080769 & 0.041036 & 0.323074 & 0.323074 \\
-0.080769 & +0.474353 & -0.080769 & 0.323074 & 0.041036 & 0.323074 \\
-0.080769 & -0.080769 & +0.474353 & 0.323074 & 0.323074 & 0.041036 \\
-0.052584 & -0.028075 & -0.028075 & 0.884134 & 0.112300 & 0.112300 \\
-0.028075 & -0.052584 & -0.028075 & 0.112300 & 0.884134 & 0.112300 \\
-0.028075 & -0.028075 & -0.052584 & 0.112300 & 0.112300 & 0.884134 \\
-0.111111 & -0.111111 & -0.111111 & 0.444444 & 0.444444 & 0.444444
\end{array}\right]\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6}
\end{array}\right)
\end{align*}
$$

The Gauss integration can be written in the form

$$
\iint_{\Omega} f(\xi, \nu) d A \approx \sum_{j=1}^{7} w_{j} f\left(\vec{g}_{j}\right)=\langle\vec{w}, \mathbf{M} \cdot \vec{f}\rangle
$$

To integrate over the general triangle E use the transformation (32), i.e.

$$
\iint_{E} f d A=\iint_{\Omega} f(\vec{x}(\xi, \nu))\left|\operatorname{det}\left(\frac{\partial(x, y)}{\partial(\xi, \nu)}\right)\right| d \xi d \nu \approx|\operatorname{det} \mathbf{T}|\langle\vec{w}, \mathbf{M} \cdot \vec{f}\rangle .
$$

Now all the tools to approximate the integrals required for the element stiffness matrix are available.

6.5.3 Integration of $f \phi$

The test function ϕ is given by its values $\vec{\phi}$ at the nodes, i.e. the corners of the triangle and the midpoints of the sides. Examine different methods to give the function f : either by providing the values at the Gauss points, or by using the values at the nodes.

- If the values of the function f at the Gauss points \vec{g}_{i} are denoted by f_{i} then this integral is approximated by

$$
\begin{aligned}
\iint_{E} f \phi d A & \approx|\operatorname{det}(\mathbf{T})| \sum_{j=1}^{7} w_{j} f_{j} \phi\left(g_{j}\right)=|\operatorname{det}(\mathbf{T})|\langle\operatorname{diag}(\vec{w}) \vec{f}, \mathbf{M} \vec{\phi}\rangle \\
& =|\operatorname{det}(\mathbf{T})|\left\langle\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \vec{f}, \vec{\phi}\right\rangle
\end{aligned}
$$

Thus find one contribution to (36).

- If the values of the function f at the nodes are denoted by f_{i} then first determine the values at the Gauss points by a quadratic interpolation. Then integrate as above, leading to the approximation

$$
\iint_{E} f \phi d A \approx|\operatorname{det}(\mathbf{T})|\langle\operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}, \mathbf{M} \vec{\phi}\rangle=|\operatorname{det}(\mathbf{T})|\left\langle\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}, \vec{\phi}\right\rangle
$$

The matrices $\mathbf{M}^{T} \operatorname{diag}(\vec{w})$ and $\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M}$ are independent on the triangle E.

6.5.4 Integration of $b_{0} u \phi$

Since the values of the functions u and ϕ are known at the nodes use an interpolation and then the function $b_{0}(x, y)$ at the Gauss nodes to find

$$
\begin{aligned}
\iint_{E} b_{0} u \phi d A & \approx|\operatorname{det}(\mathbf{T})| \sum_{j=1}^{7} w_{j} b_{0}\left(g_{j}\right) u\left(g_{j}\right) \phi\left(g_{j}\right)=|\operatorname{det}(\mathbf{T})|\left\langle\operatorname{diag}(\vec{w}) \operatorname{diag}\left(\vec{b}_{0}\right) \mathbf{M} \vec{u}, \mathbf{M} \vec{\phi}\right\rangle \\
& =|\operatorname{det}(\mathbf{T})|\left\langle\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \operatorname{diag}\left(\vec{b}_{0}\right) \mathbf{M} \vec{u}, \vec{\phi}\right\rangle
\end{aligned}
$$

where $\operatorname{diag}\left(\vec{b}_{0}\right)=\operatorname{diag}\left(b_{0}\left(\vec{g}_{1}\right), b_{0}\left(\vec{g}_{2}\right), b_{0}\left(\vec{g}_{3}\right), \ldots, b_{0}\left(\vec{g}_{7}\right)\right)$.

6.5.5 Transformation of the gradient to the standard triangle

To examine the contributions containing ∇u or $\nabla \phi$ requires considerably more tools than the ones used in Section 6.4.4 for linear elements. For linear elements the gradients are constant on each of the triangles. For quadratic elements the gradients are linear functions and thus not constant. First examine how the gradient behave under the transformation to the standard triangle, only then use the above integration methods.

According to Section 6.3.1 the coordinates (ξ, ν) of the standard triangle are connected to the global coordinates (x, y) by

$$
\binom{x}{y}=\binom{x_{1}}{y_{1}}+\left[\begin{array}{cc}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right] \cdot\binom{\xi}{\nu}=\binom{x_{1}}{y_{1}}+\mathbf{T} \cdot\binom{\xi}{\nu}
$$

or equivalently

$$
\binom{\xi}{\nu}=\mathbf{T}^{-1} \cdot\binom{x-x_{1}}{y-y_{1}}=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\begin{array}{cc}
y_{3}-y_{1} & -x_{3}+x_{1} \\
-y_{2}+y_{1} & x_{2}-x_{1}
\end{array}\right] \cdot\binom{x-x_{1}}{y-y_{1}}
$$

If a function $f(x, y)$ is given on the general triangle E can pull it back to the standard triangle by

$$
g(\xi, \nu)=f(x(\xi, \nu), y(\xi, \nu))
$$

and then compute the gradient of $g(\xi, \nu)$ with respect to its independent variables ξ and ν. The result will depend on the partial derivatives of f with respect to x and y. The standard chain rule implies

$$
\begin{aligned}
\frac{\partial}{\partial \xi} g(\xi, \nu) & =\frac{\partial}{\partial \xi} f(x(\xi, \nu), y(\xi, \nu))=\frac{\partial f(x, y)}{\partial x} \frac{\partial x}{\partial \xi}+\frac{\partial f(x, y)}{\partial y} \frac{\partial y}{\partial \xi} \\
& =\frac{\partial f(x, y)}{\partial x}\left(x_{2}-x_{1}\right)+\frac{\partial f(x, y)}{\partial y}\left(y_{2}-y_{1}\right) \\
\frac{\partial}{\partial \nu} g(\xi, \nu) & =\frac{\partial}{\partial \nu} f(x(\xi, \nu), y(\xi, \nu))=\frac{\partial f(x, y)}{\partial x} \frac{\partial x}{\partial \nu}+\frac{\partial f(x, y)}{\partial y} \frac{\partial y}{\partial \nu} \\
& =\frac{\partial f(x, y)}{\partial x}\left(x_{3}-x_{1}\right)+\frac{\partial f(x, y)}{\partial y}\left(y_{3}-y_{1}\right)
\end{aligned}
$$

This can be written with the help of matrices in the form

$$
\binom{\frac{\partial g}{\partial \xi}}{\frac{\partial g}{\partial \nu}}=\left[\begin{array}{ll}
\left(x_{2}-x_{1}\right) & \left(y_{2}-y_{1}\right) \\
\left(x_{3}-x_{1}\right) & \left(y_{3}-y_{1}\right)
\end{array}\right] \cdot\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\mathbf{T}^{T} \cdot\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}
$$

or equivalently

$$
\begin{equation*}
\left(\frac{\partial g}{\partial \xi}, \frac{\partial g}{\partial \nu}\right)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot \mathbf{T} \tag{42}
\end{equation*}
$$

This implies

$$
\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\left(\frac{\partial g}{\partial \xi}, \frac{\partial g}{\partial \nu}\right) \cdot \mathbf{T}^{-1}=\frac{1}{\operatorname{det} \mathbf{T}}\left(\frac{\partial g}{\partial \xi}, \frac{\partial g}{\partial \nu}\right) \cdot\left[\begin{array}{cc}
y_{3}-y_{1} & -x_{3}+x_{1} \\
-y_{2}+y_{1} & x_{2}-x_{1}
\end{array}\right]
$$

or by transposition

$$
\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\frac{1}{\operatorname{det} \mathbf{T}}\left[\begin{array}{cc}
y_{3}-y_{1} & -y_{2}+y_{1} \tag{43}\\
-x_{3}+x_{1} & x_{2}-x_{1}
\end{array}\right]\binom{\frac{\partial g}{\partial \xi}}{\frac{\partial g}{\partial \nu}} .
$$

Let g be a function on the standard triangle Ω given as a linear combination of the basis functions, i.e.

$$
g(\xi, \nu)=\sum_{i=1}^{6} g_{i} \Phi_{i}(\xi, \nu)
$$

where the basis function $\Phi_{i}(\xi, \nu)$ are given by (39). Then its gradient with respect to ξ and ν can be determined with the help of elementary partial derivatives applied to the expressions in (39). The result is

$$
\operatorname{grad} \vec{\Phi}=\left[\begin{array}{cc}
-3+4 \xi+4 \nu & -3+4 \xi+4 \nu \tag{44}\\
4 \xi-1 & 0 \\
0 & 4 \nu-1 \\
4 \nu & 4 \xi \\
-4 \nu & 4-4 \xi-8 \nu \\
4-8 \xi-4 \nu & -4 \xi
\end{array}\right]=\left[\begin{array}{cc}
\vec{\Phi}_{\xi}(\xi, \nu) & \vec{\Phi}_{\nu}(\xi, \nu)
\end{array}\right]
$$

Thus find on the standard triangle Ω

$$
\left(\frac{\partial g}{\partial \xi}, \frac{\partial g}{\partial \nu}\right)=\left(g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}\right) \cdot\left[\begin{array}{cc}
\vec{\Phi}_{\xi}(\xi, \nu) & \vec{\Phi}_{\nu}(\xi, \nu)
\end{array}\right]=\vec{g}^{T} \cdot\left[\begin{array}{cc}
\vec{\Phi}_{\xi}(\xi, \nu) & \vec{\Phi}_{\nu}(\xi, \nu)
\end{array}\right]
$$

If the function $\varphi(x, y)$ is given on the general triangle E as linear combination of the basis functions on E find

$$
\varphi(x, y)=\sum_{i=1}^{6} \varphi_{i} \Phi_{i}(\xi(x, y), \nu(x, y))
$$

Now combine the results in this section to conclude

$$
\left(\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}\right)=\left(\frac{\partial \varphi}{\partial \xi}, \frac{\partial \varphi}{\partial \nu}\right) \cdot \mathbf{T}^{-1}=\vec{\varphi}^{T} \cdot\left[\begin{array}{cc}
\vec{\Phi}_{\xi} & \vec{\Phi}_{\nu}
\end{array}\right] \cdot \mathbf{T}^{-1}
$$

or by transposition

$$
\binom{\frac{\partial \varphi}{\partial x}}{\frac{\partial \varphi}{\partial y}}=\left(\mathbf{T}^{-1}\right)^{T} \cdot\left[\begin{array}{c}
\vec{\Phi}_{\xi}^{T} \\
\vec{\Phi}_{\nu}^{T}
\end{array}\right] \cdot \vec{\varphi}=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\begin{array}{ll}
+y_{3}-y_{1} & -y_{2}+y_{1} \\
-x_{3}+x_{1} & +x_{2}-x_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
\vec{\Phi}_{\xi}^{T} \\
\vec{\Phi}_{\nu}^{T}
\end{array}\right] \cdot \vec{\varphi}
$$

and the same identities can be spelled out for the two components independently.

$$
\begin{align*}
\frac{\partial \varphi}{\partial x} & =\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+y_{3}-y_{1}\right) \vec{\Phi}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \vec{\Phi}_{\nu}^{T}\right] \cdot \vec{\varphi} \tag{45}\\
\frac{\partial \varphi}{\partial y} & =\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-x_{3}+x_{1}\right) \vec{\Phi}_{\xi}^{T}+\left(+x_{2}-x_{1}\right) \vec{\Phi}_{\nu}^{T}\right] \cdot \vec{\varphi} \tag{46}
\end{align*}
$$

For the numerical integration use the values of the gradients at the Gauss integration points $\vec{g}_{j}=\left(\xi_{j}, \nu_{j}\right)$. The values of the function φ at the Gauss points can be computed with the help of the interpolation matrix \mathbf{M} by

$$
\left(\begin{array}{c}
\varphi\left(\vec{g}_{1}\right) \\
\varphi\left(\vec{g}_{2}\right) \\
\vdots \\
\varphi\left(\vec{g}_{7}\right)
\end{array}\right)=\mathbf{M} \cdot\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\vdots \\
\varphi_{6}
\end{array}\right)
$$

Similarly we define the interpolation matrices for the partial derivatives. Using

$$
\begin{aligned}
\mathbf{M}_{\xi} & =\left[\begin{array}{ccccccc}
-3+4 \xi_{1}+4 \nu_{1} & 4 \xi_{1}-1 & 0 & 4 \nu_{1} & -4 \nu_{1} & 4-8 \xi_{1}-4 \nu_{1} \\
-3+4 \xi_{2}+4 \nu_{2} & 4 \xi_{2}-1 & 0 & 4 \nu_{2} & -4 \nu_{2} & 4-8 \xi_{2}-4 \nu_{2} \\
\vdots & & & & & \vdots \\
-3+4 \xi_{7}+4 \nu_{7} & 4 \xi_{7}-1 & 0 & 4 \nu_{7} & -4 \nu_{7} & 4-8 \xi_{7}-4 \nu_{7}
\end{array}\right] \\
& \approx\left[\begin{array}{ccccccc}
-2.18971 & -0.59485 & 0.00000 & 0.40515 & -0.40515 & 2.78456 \\
0.59485 & 2.18971 & 0.00000 & 0.40515 & -0.40515 & -2.78456 \\
0.59485 & -0.59485 & 0.00000 & 3.18971 & -3.18971 & 0.00000 \\
0.76114 & 0.88057 & 0.00000 & 1.88057 & -1.88057 & -1.64170 \\
-0.88057 & -0.76114 & 0.00000 & 1.88057 & -1.88057 & 1.64170 \\
-0.88057 & 0.88057 & 0.00000 & 0.23886 & -0.23886 & 0.00000 \\
-0.33333 & 0.33333 & 0.00000 & 1.33333 & -1.33333 & 0.00000
\end{array}\right]
\end{aligned}
$$

find

$$
\left(\begin{array}{c}
\varphi_{\xi}\left(\vec{g}_{1}\right) \\
\varphi_{\xi}\left(\vec{g}_{2}\right) \\
\vdots \\
\varphi_{\xi}\left(\vec{g}_{7}\right)
\end{array}\right)=\mathbf{M}_{\xi} \cdot\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\vdots \\
\varphi_{6}
\end{array}\right)
$$

Similarly write

$$
\begin{aligned}
\mathbf{M}_{\nu}= & {\left[\begin{array}{ccccccc}
-3+4 \xi_{1}+4 \nu_{1} & 0 & 4 \nu_{1}-1 & 4 \xi_{1} & 4-4 \xi_{1}-8 \nu_{1} & -4 \xi_{1} \\
-3+4 \xi_{2}+4 \nu_{2} & 0 & 4 \nu_{2}-1 & 4 \xi_{2} & 4-4 \xi_{2}-8 \nu_{2} & -4 \xi_{2} \\
\vdots & & & & \vdots \\
-3+4 \xi_{7}+4 \nu_{7} & 0 & 4 \nu_{7}-1 & 4 \xi_{7} & 4-4 \xi_{7}-8 \nu_{7} & -4 \xi_{7}
\end{array}\right] } \\
& \approx\left[\begin{array}{ccccccc}
-2.18971 & 0.00000 & -0.59485 & 0.40515 & 2.78456 & -0.40515 \\
0.59485 & 0.00000 & -0.59485 & 3.18971 & 0.00000 & -3.18971 \\
0.59485 & 0.00000 & 2.18971 & 0.40515 & -2.78456 & -0.40515 \\
0.76114 & 0.00000 & 0.88057 & 1.88057 & -1.64170 & -1.88057 \\
-0.88057 & 0.00000 & 0.88057 & 0.23886 & 0.00000 & -0.23886 \\
-0.88057 & 0.00000 & -0.76114 & 1.88057 & 1.64170 & -1.88057 \\
-0.33333 & 0.00000 & 0.33333 & 1.33333 & 0.00000 & -1.33333
\end{array}\right]
\end{aligned}
$$

and

$$
\left(\begin{array}{c}
\varphi_{\nu}\left(\vec{g}_{1}\right) \\
\varphi_{\nu}\left(\vec{g}_{2}\right) \\
\vdots \\
\varphi_{\nu}\left(\vec{g}_{7}\right)
\end{array}\right)=\mathbf{M}_{\nu} \cdot\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\vdots \\
\varphi_{6}
\end{array}\right)
$$

The matrices \mathbf{M}_{ξ} and \mathbf{M}_{ν} allow to compute the values of the partial derivatives at the Gauss points in the standard triangle Ω and they are independent on the general triangle E.

Combining the above two computations use the notation

$$
\vec{x}_{i}=\binom{x_{1}}{y_{1}}+\mathbf{T} \cdot\binom{\xi_{i}}{\nu_{i}} \quad \text { for } \quad i=1,2,3, \ldots, 7
$$

and find for the first component $\varphi_{x}=\frac{\partial \varphi}{\partial x}$ of the gradient at the Gauss points

$$
\left(\begin{array}{c}
\varphi_{x}\left(\vec{x}_{1}\right) \\
\varphi_{x}\left(\vec{x}_{2}\right) \\
\vdots \\
\varphi_{x}\left(\vec{x}_{7}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+y_{3}-y_{1}\right) \mathbf{M}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}
$$

and for the second component of the gradient

$$
\left(\begin{array}{c}
\varphi_{y}\left(\vec{x}_{1}\right) \\
\varphi_{y}\left(\vec{x}_{2}\right) \\
\vdots \\
\varphi_{y}\left(\vec{x}_{7}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}^{T}+\left(+x_{2}-x_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}
$$

The above results for \mathbf{M}_{ξ} and \mathbf{M}_{ν} can be coded in Octave and then used to compute the element stiffness matrix.

6.5.6 Partial derivatives at the nodes

For post processing one also needs the partial derivatives of the function at the nodes. On the standard triangle Ω use the formulas for the partial derivatives of the basis functions in expression (44) to find them at the nodes, given by the (ξ, ν) coordinates in Table 14 for quadratic elements.

$$
\left(\begin{array}{c}
\varphi_{\xi}\left(\xi_{1}, \nu_{1}\right) \\
\varphi_{\xi}\left(\xi_{2}, \nu_{2}\right) \\
\varphi_{\xi}\left(\xi_{3}, \nu_{3}\right) \\
\varphi_{\xi}\left(\xi_{4}, \nu_{4}\right) \\
\varphi_{\xi}\left(\xi_{5}, \nu_{5}\right) \\
\varphi_{\xi}\left(\xi_{6}, \nu_{6}\right)
\end{array}\right)=\left[\begin{array}{cccccc}
-3 & 1 & 1 & 1 & -1 & -1 \\
-1 & 3 & -1 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 2 & 0 \\
0 & 0 & -4 & -2 & -2 & 0 \\
4 & -4 & 0 & -2 & 2 & 0
\end{array}\right]\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4} \\
\varphi_{5} \\
\varphi_{6}
\end{array}\right)=\mathbf{N}_{\xi}\left(\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4} \\
\varphi_{5} \\
\varphi_{6}
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
\varphi_{\nu}\left(\xi_{1}, \nu_{1}\right) \\
\varphi_{\nu}\left(\xi_{2}, \nu_{2}\right) \\
\varphi_{\nu}\left(\xi_{3}, \nu_{3}\right) \\
\varphi_{\nu}\left(\xi_{4}, \nu_{4}\right) \\
\varphi_{\nu}\left(\xi_{5}, \nu_{5}\right) \\
\varphi_{\nu}\left(\xi_{6}, \nu_{6}\right)
\end{array}\right)=\left[\begin{array}{cccccc}
-3 & 1 & 1 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 3 & 1 & 1 & -1 \\
0 & 4 & 0 & 2 & 0 & 2 \\
4 & 0 & -4 & -2 & 0 & 2 \\
0 & -4 & 0 & -2 & 0 & -2
\end{array}\right]\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4} \\
\varphi_{5} \\
\varphi_{6}
\end{array}\right)=\mathbf{N}_{\nu}\left(\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4} \\
\varphi_{5} \\
\varphi_{6}
\end{array}\right)
$$

Now use the transformation formulas (45) and (46) to determine the gradient of a function on the general triangle

$$
\varphi(x, y)=\sum_{i=1}^{6} \varphi_{i} \Phi_{i}(\xi(x, y), \nu(x, y))
$$

at the nodes $\left(x_{i}, y_{i}\right)$ in the general triangle E, leading to

$$
\begin{aligned}
& \left(\begin{array}{c}
\varphi_{x}\left(x_{1}, y_{1}\right) \\
\varphi_{x}\left(x_{2}, y_{2}\right) \\
\vdots \\
\varphi_{x}\left(x_{6}, y_{6}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+y_{3}-y_{1}\right) \mathbf{N}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \mathbf{N}_{\nu}^{T}\right] \cdot \vec{\varphi} \\
& \left(\begin{array}{c}
\varphi_{y}\left(x_{1}, y_{1}\right) \\
\varphi_{y}\left(x_{2}, y_{2}\right) \\
\vdots \\
\varphi_{y}\left(x_{6}, y_{6}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-x_{3}+x_{1}\right) \mathbf{N}_{\xi}^{T}+\left(+x_{2}-x_{1}\right) \mathbf{N}_{\nu}^{T}\right] \cdot \vec{\varphi}
\end{aligned}
$$

These results are useful to evaluate the gradient at the nodes. Observe that the results depends on the triangle used for the interpolation and a node is typically member of more than one triangle.

6.5.7 Integration of $u \vec{b} \cdot \nabla \phi$ and $a \nabla u \cdot \nabla \phi$

The vector function $\vec{b}(\vec{x})$ has to be evaluated at the Gauss integration points \vec{g}_{j}. Then the integration of

$$
\iint_{E} u \vec{b} \nabla \phi d A=\iint_{E} u b_{1} \frac{\partial \phi}{\partial x} d A+\iint_{E} u b_{2} \frac{\partial \phi}{\partial y} d A
$$

is approximated by

$$
\begin{aligned}
& \iint_{E} u b_{1} \frac{\partial \phi}{\partial x} d A \approx \frac{|\operatorname{det} \mathbf{T}|}{\operatorname{det} \mathbf{T}}\left\langle\left(\left(y_{3}-y_{1}\right) \mathbf{M}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}^{T}\right) \cdot \operatorname{diag}\left(\overrightarrow{w b_{1}}\right) \cdot \mathbf{M} \cdot \vec{u}, \vec{\phi}\right\rangle \\
& \iint_{E} u b_{2} \frac{\partial \phi}{\partial y} d A \approx \frac{|\operatorname{det} \mathbf{T}|}{\operatorname{det} \mathbf{T}}\left\langle\left(\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}^{T}+\left(x_{2}-x_{1}\right) \mathbf{M}_{\nu}^{T}\right) \cdot \operatorname{diag}\left(\overrightarrow{w b_{2}}\right) \cdot \mathbf{M} \cdot \vec{u}, \vec{\phi}\right\rangle .
\end{aligned}
$$

The function $a \nabla u \cdot \nabla \phi=a\left(\frac{\partial u}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial \phi}{\partial y}\right)$ has to be evaluated at the Gauss integration points \vec{g}_{j}, then multiplied by the Gauss weights w_{i} and added up. Use the vector $\overrightarrow{w a}$ with the values of the function $a\left(x_{i}, y_{i}\right)$ and the weights w_{i} at the Gauss points to obtain

$$
\begin{aligned}
\iint_{E} a \frac{\partial u(\vec{x})}{\partial x} \frac{\partial \phi(\vec{x})}{\partial x} d A & =|\operatorname{det} \mathbf{T}| \iint_{\Omega} a(\vec{x}(\xi, \nu)) \frac{\partial u(\vec{x}(\xi, \nu))}{\partial x} \frac{\partial \phi(\vec{x}(\xi, \nu))}{\partial x} d \xi d \nu \\
& \approx \frac{|\operatorname{det} \mathbf{T}|}{(\operatorname{det} \mathbf{T})^{2}}\left\langle\mathbf{A}_{x} \cdot \vec{u}, \vec{\phi}\right\rangle=\frac{1}{|\operatorname{det} \mathbf{T}|}\left\langle\mathbf{A}_{x} \cdot \vec{u}, \vec{\phi}\right\rangle \\
\iint_{E} a \frac{\partial u(\vec{x})}{\partial y} \frac{\partial \phi(\vec{x})}{\partial y} d A & =|\operatorname{det} \mathbf{T}| \iint_{\Omega} a(\vec{x}(\xi, \nu)) \frac{\partial u(\vec{x}(\xi, \nu))}{\partial y} \frac{\partial \phi(\vec{x}(\xi, \nu))}{\partial y} d \xi d \nu \\
& \approx \frac{|\operatorname{det} \mathbf{T}|}{(\operatorname{det} \mathbf{T})^{2}}\left\langle\mathbf{A}_{y} \cdot \vec{u}, \vec{\phi}\right\rangle=\frac{1}{|\operatorname{det} \mathbf{T}|}\left\langle\mathbf{A}_{y} \cdot \vec{u}, \vec{\phi}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{A}_{x}=\left[\left(+y_{3}-y_{1}\right) \mathbf{M}_{\xi}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}\right]^{T} \cdot \operatorname{diag}(\overrightarrow{w a}) \cdot\left[\left(+y_{3}-y_{1}\right) \mathbf{M}_{\xi}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}\right] \\
& \mathbf{A}_{y}=\left[\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}+\left(+x_{2}-x_{1}\right) \mathbf{M}_{\nu}\right]^{T} \cdot \operatorname{diag}(\overrightarrow{w a}) \cdot\left[\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}+\left(+x_{2}-x_{1}\right) \mathbf{M}_{\nu}\right] .
\end{aligned}
$$

6.5.8 Integration over boundary segments

In expression (31) we have to compute integrals over the boundary

$$
\int_{\Gamma_{2}} \phi\left(g_{2}+g_{3} u\right) d s
$$

For triangular domains the boundary consists of straight line segments. Thus replace the integral by a sum of line integrals and use a Gauss integration. Based on the two endpoints \vec{x}_{1} and \vec{x}_{3} and the midpoint $\vec{x}_{2}=\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{3}\right)$ use the values at
three Gauss integration points. Based on ${ }^{21}$

$$
\int_{-h / 2}^{h / 2} f(x) d x \approx \frac{h}{18}\left(5 f\left(-\frac{\sqrt{3}}{2 \sqrt{5}} h\right)+8 f(0)+5 f\left(\frac{\sqrt{3}}{2 \sqrt{5}} h\right)\right)
$$

polynomials up to degree 5 are integrated exactly, thus the error on one interval is proportional to h^{7}. To evaluate a function at the Gauss points

$$
\begin{aligned}
\vec{p}_{1} & =\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{3}\right)-\frac{\sqrt{3}}{2 \sqrt{5}}\left(\vec{x}_{3}-\vec{x}_{1}\right) \\
\vec{p}_{2} & =\vec{x}_{2}=\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{3}\right) \\
\vec{p}_{3} & =\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{3}\right)+\frac{\sqrt{3}}{2 \sqrt{5}}\left(\vec{x}_{3}-\vec{x}_{1}\right)
\end{aligned}
$$

use a quadratic interpolation of a function with $f_{-}=f(-h / 2), f_{0}=f(0)$ and $f_{+}=f(+h / 2)$. Since ${ }^{22}$

$$
f(x)=f_{0}+\frac{f_{+}-f_{-}}{h} x+2 \frac{f_{-}-2 f_{0}+f_{+}}{h^{2}} x^{2}
$$

the quadratic interpolation result at $\pm \alpha h$ is

$$
\begin{aligned}
f(\pm \alpha h) & =f_{0} \pm\left(f_{+}-f_{-}\right) \alpha+2\left(f_{-}-2 f_{0}+f_{+}\right) \alpha^{2} \\
& =f_{-}\left(\pm \alpha+2 \alpha^{2}\right)+f_{0}\left(1-4 \alpha^{2}\right)+f_{+}\left(\mp \alpha+2 \alpha^{2}\right)
\end{aligned}
$$

where $\alpha=\frac{\sqrt{3}}{2 \sqrt{5}}=\frac{\sqrt{15}}{10} \approx 0.316$. If a function u is given at the two endpoints by u_{1} and u_{3} and at the midpoint by u_{2} obtain

$$
\begin{align*}
\left(\begin{array}{l}
u\left(\vec{p}_{1}\right) \\
u\left(\vec{p}_{2}\right) \\
u\left(\vec{p}_{3}\right)
\end{array}\right) & =\left[\begin{array}{ccc}
+\alpha+2 \alpha^{2} & 1-4 \alpha^{2} & -\alpha+2 \alpha^{2} \\
0 & 1 & 0 \\
-\alpha+2 \alpha^{2} & 1-4 \alpha^{2} & +\alpha+2 \alpha^{2}
\end{array}\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \\
& =\mathbf{M}_{B}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \approx\left[\begin{array}{ccc}
+0.68730 & 0.4 & -0.08730 \\
0 & 1 & 0 \\
-0.08730 & 0.4 & +0.68730
\end{array}\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \tag{47}
\end{align*}
$$

With the length $L=\sqrt{\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}}$ of the segment this leads to the approximations

$$
\int_{\text {edge }} \phi g_{2} d s \approx \frac{L}{18}\left\langle\mathbf{M}_{B}\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right),\left(\begin{array}{c}
5 g_{2}\left(\vec{p}_{1}\right) \\
8 g_{2}\left(\vec{p}_{2}\right) \\
5 g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle=\frac{L}{18}\left\langle\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{M}_{B}^{T}\left(\begin{array}{c}
5 g_{2}\left(\vec{p}_{1}\right) \\
8 g_{2}\left(\vec{p}_{2}\right) \\
5 g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle
$$

[^15]Thus t^{6} is not integrated exactly and the error is proportional to h^{6}. The system to be solved is

$$
\left\{\begin{array}{rl}
w_{0}+2 w_{1} & =2 \\
2 w_{1} \xi^{2} & =\frac{2}{3} \\
2 w_{1} \xi^{4} & =\frac{2}{5}
\end{array} \quad \Longrightarrow \quad \xi^{2}=\frac{3}{5}, w_{1}=\frac{5}{9}, w_{0}=\frac{8}{9} .\right.
$$

${ }^{22}$ To verify use $f(0)=f_{0}$ and

$$
f(\pm h / 2)=f_{0} \pm \frac{f_{+}-f_{-}}{h} \frac{h}{2}+2 \frac{f_{-}-2 f_{0}+f_{+}}{h^{2}} \frac{h^{2}}{4}=f_{0} \pm \frac{1}{2}\left(f_{+}-f_{-}\right)+\frac{1}{2}\left(f_{-}-2 f_{0}+f_{+}\right) .
$$

$$
\begin{aligned}
\int_{\text {edge }} \phi g_{3} u d s & \approx \frac{L}{18}\left\langle\mathbf{M}_{B}\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right),\left[\begin{array}{ccc}
5 g_{3}\left(\vec{p}_{1}\right) & 0 & 0 \\
0 & 8 g_{3}\left(\vec{p}_{2}\right) & 0 \\
0 & 0 & 5 g_{3}\left(\vec{p}_{3}\right)
\end{array}\right] \mathbf{M}_{B}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle \\
& =\frac{L}{18}\left\langle\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right), \mathbf{M}_{B}^{T}\left[\begin{array}{ccc}
5 g_{3}\left(\vec{p}_{1}\right) & 0 & 0 \\
0 & 8 g_{3}\left(\vec{p}_{2}\right) & 0 \\
0 & 0 & 5 g_{3}\left(\vec{p}_{3}\right)
\end{array}\right] \mathbf{M}_{B}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle .
\end{aligned}
$$

The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the second expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the function to be integrated is a polynomial of degree 5 , or less. If h is the typical length of an edge then the error is of the order h^{7} for one line segment and thus of order h^{6} for the total boundary. This boundary integration is used for the second order elements.

The second expression is of the form

$$
\int \phi g_{3} u d s \approx\langle\vec{\phi}, \mathbf{B} \vec{u}\rangle=\left\langle\left(\begin{array}{c}
\phi_{2} \\
\phi_{2} \\
\phi_{3}
\end{array}\right),\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)\right\rangle
$$

and its effect on the linear system $\mathbf{A} \vec{u}+\mathbf{W} \vec{f}=\overrightarrow{0}$ depends on nodes being on the Dirichlet part of the boundary.

- If u_{1} and u_{3} are both free, i.e. not on the Dirichlet section, then u_{2} is free too. All entries of the matrix \mathbf{B} have to be added to the global stiffness matrix \mathbf{A}.
- If u_{1} and u_{3} are on the Dirichlet section, then nothing has to be added to \mathbf{A} and \vec{f}.
- If u_{1} and u_{2} are free and u_{3} is on the Dirichlet section, then only the first two expressions

$$
\begin{aligned}
& b_{11} u_{1}+b_{12} u_{2}+b_{13} u_{3}=b_{11} u_{1}+b_{12} u_{2}+b_{13} d_{3} \\
& b_{21} u_{1}+b_{22} u_{2}+b_{23} u_{3}=b_{21} u_{1}+b_{22} u_{2}+b_{23} d_{3}
\end{aligned}
$$

have to be added. d_{3} is the Dirichlet value at the position of $u_{3} . b_{13} g_{3}$ and $b_{23} d_{3}$ have to be added to $\mathbf{W} \vec{f}$, the other expression to \mathbf{A}.

- If u_{2} and u_{3} are free and u_{1} is on the Dirichlet section, then only the second and third expressions

$$
\begin{aligned}
b_{21} u_{1}+b_{22} u_{2}+b_{23} u_{3} & =b_{21} d_{1}+b_{22} u_{2}+b_{23} u_{3} \\
b_{31} u_{1}+b_{32} u_{2}+b_{33} u_{3} & =b_{31} d_{1}+b_{32} u_{2}+b_{33} u_{3}
\end{aligned}
$$

have to be added. d_{1} is the Dirichlet value at the position of $u_{1} . b_{21} g_{1}$ and $b_{31} d_{1}$ have to be added to $\mathbf{W} \vec{f}$, the other expression to \mathbf{A}.

- If u_{1} and u_{3} are free, then u_{2} has to be free too, since it is the midpoint of a Neumann section of the boundary.

6.6 Construction of third order elements

In this section the construction of the element stiffness matrix and vector for triangular elements or order 3 is examined. The ideas are extremely similar to Section 6.5 for quadratic functions. Again all contributions in (31)

$$
0=\iint_{\Omega} \nabla \phi \cdot(a \nabla u-u \vec{b})+\phi\left(b_{0} u-f\right) d A-\int_{\Gamma_{2}} \phi\left(g_{2}+g_{3} u\right) d s
$$

have to be transformed into

$$
\begin{equation*}
0=\langle\vec{\phi}, \mathbf{A} \vec{u}+\mathbf{W} \vec{f}\rangle . \tag{48}
\end{equation*}
$$

For third order elements a general cubic function is used on each of the triangles in the mesh. There are 10 linearly independent polynomials of degree 3 or less, namely $1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}$ and y^{3}.

Figure 77: Transformation of the cubic standard triangle Ω to a general triangle E

6.6.1 The basis functions for a third order element and cubic interpolation

Examine the standard triangle Ω in Figure 77 with the values of a function $f(\xi, \nu)$ at the corners, the points on the edges and the mid point. Use the numbering as shown in Figure 77. The parameters ξ and ν at the nodes are given by Table 15. Construct polynomials $\phi_{i}(\xi, \nu)$ of degree 3 , such that

$$
\Phi_{i}\left(\xi_{j}, \nu_{j}\right)=\delta_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

i.e. each basis function is equal to 1 at one of the nodes and vanishes on all other nodes. These basis polynomials are given by ${ }^{23}$

node i	1	2	3	4	5	6	7	8	9	10
ξ_{i}	0	1	0	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$
ν_{i}	0	0	1	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$

Table 15: Coordinates of the nodes in the standard cubic triangle

$$
\vec{\Phi}(\xi, \nu)=\left(\begin{array}{c}
\Phi_{1}(\xi, \nu) \tag{49}\\
\Phi_{2}(\xi, \nu) \\
\Phi_{3}(\xi, \nu) \\
\Phi_{4}(\xi, \nu) \\
\Phi_{5}(\xi, \nu) \\
\Phi_{6}(\xi, \nu) \\
\Phi_{7}(\xi, \nu) \\
\Phi_{8}(\xi, \nu) \\
\Phi_{9}(\xi, \nu) \\
\Phi_{10}(\xi, \nu)
\end{array}\right)=\left(\begin{array}{c}
(1-(\xi+\nu))(1-3(\xi+\nu))\left(1-\frac{3}{2}(\xi+\nu)\right) \\
\xi(3 \xi-1)\left(\frac{3}{2} \xi-1\right) \\
\nu(3 \nu-1)\left(\frac{3}{2} \nu-1\right) \\
\frac{9}{2} \xi \nu(3 \xi-1) \\
\frac{9}{2} \xi \nu(3 \nu-1) \\
\frac{9}{2} \nu(1-(\xi+\nu))(3 \nu-1) \\
9 \nu(1-(\xi+\nu))\left(1-\frac{3}{2}(\xi+\nu)\right) \\
9 \xi\left(1-\frac{3}{2}(\xi+\nu)\right)(1-(\xi+\nu)) \\
\frac{9}{2} \xi(3 \xi-1)(1-(\xi+\nu)) \\
27 \xi \nu(1-(\xi+\nu))
\end{array}\right)
$$

[^16]\[

=\left($$
\begin{array}{c}
1-\frac{11}{2} \xi-\frac{11}{2} \nu+9 \xi^{2}+18 \xi \nu+9 \nu^{2}-\frac{9}{2} \xi^{3}-\frac{27}{2} \xi^{2} \nu-\frac{27}{2} \xi \nu^{2}-\frac{9}{2} \nu^{3} \tag{50}\\
\xi-\frac{9}{2} \xi^{2}+\frac{9}{2} \xi^{3} \\
\nu-\frac{9}{2} \nu^{2}+\frac{9}{2} \nu^{3} \\
-\frac{9}{2} \xi \nu+\frac{27}{2} \xi^{2} \nu \\
-\frac{9}{2} \xi \nu+\frac{27}{2} \xi \nu^{2} \\
-\frac{9}{2} \nu+\frac{9}{2} \xi \nu+18 \nu^{2}-\frac{27}{2} \xi \nu^{2}-\frac{27}{2} \nu^{3} \\
9 \nu-\frac{45}{2} \xi \nu-\frac{45}{2} \nu^{2}+\frac{27}{2} \xi^{2} \nu+27 \xi \nu^{2}+\frac{27}{2} \nu^{3} \\
9 \xi-\frac{45}{2} \xi^{2}-\frac{45}{2} \xi \nu+\frac{27}{2} \xi^{3}+27 \xi^{2} \nu+\frac{27}{2} \xi \nu^{2} \\
-\frac{9}{2} \xi+18 \xi^{2}+\frac{9}{2} \xi \nu-\frac{27}{2} \xi^{3}-\frac{27}{2} \xi^{2} \nu \\
27 \xi \nu-27 \xi^{2} \nu-27 \xi \nu^{2}
\end{array}
$$\right)
\]

and find their graphs in Figure 78.
Any cubic polynomial f on the standard triangle Ω can be written as linear combination of the 10 basis functions by using

$$
\begin{equation*}
f(\xi, \nu)=\sum_{i=1}^{10} f\left(\xi_{i}, \nu_{i}\right) \Phi_{i}(\xi, \nu)=\sum_{i=1}^{10} f_{i} \Phi_{i}(\xi, \nu) \tag{51}
\end{equation*}
$$

This is the formula to apply a cubic interpolation on the triangle, using the values $f_{i}=f\left(\xi_{i}, \nu_{i}\right)$ of the function at the nodes. To use this interpolation for a given point (x, y) in the triangle E in Figure 77. The transformation form the standard triangle Ω to the general triangle E is identical to the second order elements, i.e.

$$
\binom{x}{y}=\binom{x_{1}}{y_{1}}+\left[\begin{array}{ll}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right]\binom{\xi}{\nu}=\binom{x_{1}}{y_{1}}+\mathbf{T}\binom{\xi}{\nu}
$$

and

$$
\binom{\xi}{\nu}=\mathbf{T}^{-1} \cdot\binom{x-x_{1}}{y-y_{1}}=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\begin{array}{cc}
y_{3}-y_{1} & -x_{3}+x_{1} \\
-y_{2}+y_{1} & x_{2}-x_{1}
\end{array}\right] \cdot\binom{x-x_{1}}{y-y_{1}} .
$$

6.6.2 Determine values at the Gauss points and apply Gauss integration

Use equation (35) (page 138) to determine the coordinates of the seven Gauss points. Then a function to be integrated can be evaluated at these Gauss points. Determine the values of the basis functions $\Phi_{i}(\xi, \nu)$ at the Gauss points \vec{g}_{j} by $m_{j, i}=\Phi_{i}\left(\vec{g}_{j}\right)$ and write

$$
f\left(\vec{g}_{j}\right)=\sum_{i=1}^{10} f_{i} \Phi_{i}\left(\vec{g}_{j}\right)=\sum_{i=1}^{10} m_{j, i} f_{i}
$$

or using a matrix notation with $\mathbf{M} \in \mathbb{R}^{7 \times 10}$

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
f\left(\vec{g}_{1}\right) \\
f\left(\vec{g}_{2}\right) \\
\vdots \\
f\left(\vec{g}_{7}\right)
\end{array}\right)=\left[\begin{array}{cccc}
m_{1,1} & m_{1,2} & \cdots & m_{1,10} \\
m_{2,1} & m_{2,2} & \cdots & m_{2,10} \\
\vdots & \vdots & \ddots & \vdots \\
m_{7,1} & m_{7,2} & \cdots & m_{7,10}
\end{array}\right] \cdot\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{10}
\end{array}\right)=\mathbf{M} \cdot \vec{f} \approx \tag{52}\\
\approx\left[\begin{array}{ccccccccc}
+0.22 & +0.06 & +0.06 & -0.03 & -0.03 & -0.25 & +0.51 & +0.51 & -0.25 \\
+0.22 \\
+0.06 & +0.22 & +0.06 & +0.51 & -0.25 & -0.03 & -0.03 & -0.25 & +0.51 \\
+0.22 \\
+0.06 & +0.06 & +0.22 & -0.25 & +0.51 & +0.51 & -0.25 & -0.03 & -0.03 \\
+0.22 \\
+0.04 & -0.06 & -0.06 & +0.41 & +0.41 & +0.05 & -0.10 & -0.10 & +0.05 \\
+0.36 \\
-0.06 & +0.04 & -0.06 & -0.10 & +0.05 & +0.41 & +0.41 & +0.05 & -0.10 \\
+0.36 \\
-0.06 & -0.06 & +0.04 & +0.05 & -0.10 & -0.10 & +0.05 & +0.41 & +0.41 \\
+0.36 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] 1
\end{array}\right]\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
\vdots \\
f_{9} \\
f_{10}
\end{array}\right) .
$$

SHA 10-12-23
Figure 78: The 10 basis functions for third order triangular elements

The Gauss integration can be written in the form

$$
\iint_{\Omega} f(\xi, \nu) d A \approx \sum_{j=1}^{7} w_{j} f\left(\vec{g}_{j}\right)=\langle\vec{w}, \mathbf{M} \cdot \vec{f}\rangle
$$

To integrate over the general triangle E use the transformation (32), i.e.

$$
\iint_{E} f d A=\iint_{\Omega} f(\vec{x}(\xi, \nu))\left|\operatorname{det}\left(\frac{\partial(x, y)}{\partial(\xi, \nu)}\right)\right| d \xi d \nu \approx|\operatorname{det} \mathbf{T}|\langle\vec{w}, \mathbf{M} \cdot \vec{f}\rangle .
$$

Now all the tools to approximate the integrals required for the element stiffness matrix are available.

6.6.3 Integration of $f \phi$ and $b_{0} u \phi$

These integrations are identical to the case of quadratic elements The test function ϕ is given by its values $\vec{\phi}$ at the nodes, i.e. the corners of the triangle and the two points on each side.

- If the values of the function f at the Gauss points \vec{g}_{i} are denoted by f_{i} then this integral is approximated by

$$
\iint_{E} f \phi d A \approx|\operatorname{det}(\mathbf{T})| \sum_{j=1}^{7} w_{j} f_{j} \phi\left(g_{j}\right)=|\operatorname{det}(\mathbf{T})|\langle\operatorname{diag}(\vec{w}) \vec{f}, \mathbf{M} \vec{\phi}\rangle=|\operatorname{det}(\mathbf{T})|\left\langle\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \vec{f}, \vec{\phi}\right\rangle
$$

Thus find one contribution to (48).

- If the values of the function f at the nodes are denoted by f_{i} then first determine the values at the Gauss points by a cubic interpolation. Then integrate as above, leading to

$$
\iint_{E} f \phi d A \approx|\operatorname{det}(\mathbf{T})|\langle\operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}, \mathbf{M} \vec{\phi}\rangle=|\operatorname{det}(\mathbf{T})|\left\langle\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}, \vec{\phi}\right\rangle
$$

- Since the values of the functions u and ϕ are known at the nodes use an interpolation and then the function $b_{0}(x, y)$ at the Gauss nodes to find

$$
\begin{aligned}
\iint_{E} b_{0} u \phi d A & \approx|\operatorname{det}(\mathbf{T})| \sum_{j=1}^{7} w_{j} b_{0}\left(g_{j}\right) u\left(g_{j}\right) \phi\left(g_{j}\right)=|\operatorname{det}(\mathbf{T})|\left\langle\operatorname{diag}(\vec{w}) \operatorname{diag}\left(\vec{b}_{0}\right) \mathbf{M} \vec{u}, \mathbf{M} \vec{\phi}\right\rangle \\
& =|\operatorname{det}(\mathbf{T})|\left\langle\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \operatorname{diag}\left(\vec{b}_{0}\right) \mathbf{M} \vec{u}, \vec{\phi}\right\rangle .
\end{aligned}
$$

The matrices $\mathbf{M}^{T} \operatorname{diag}(\vec{w})$ and $\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M}$ are again independent on the triangle E, but different from the case of quadratic elements.

6.6.4 Transformation of the gradient to the standard triangle

Computing the partial derivatives is again very similar to the case of quadratic elements. If a function $f(x, y)$ is given on the general triangle E can pull it back to the standard triangle by

$$
g(\xi, \nu)=f(x(\xi, \nu), y(\xi, \nu))
$$

and then compute the gradient of $g(\xi, \nu)$ with respect to its independent variables ξ and ν. The result is This can be written with the help of matrices in the form

$$
\binom{\frac{\partial g}{\partial \xi}}{\frac{\partial g}{\partial \nu}}=\left[\begin{array}{ll}
\left(x_{2}-x_{1}\right) & \left(y_{2}-y_{1}\right) \\
\left(x_{3}-x_{1}\right) & \left(y_{3}-y_{1}\right)
\end{array}\right] \cdot\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\mathbf{T}^{T} \cdot\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}
$$

or equivalently

$$
\left(\frac{\partial g}{\partial \xi}, \frac{\partial g}{\partial \nu}\right)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot \mathbf{T}
$$

or

$$
\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\frac{1}{\operatorname{det} \mathbf{T}}\left[\begin{array}{cc}
y_{3}-y_{1} & -y_{2}+y_{1} \\
-x_{3}+x_{1} & x_{2}-x_{1}
\end{array}\right]\binom{\frac{\partial g}{\partial \xi}}{\frac{\partial g}{\partial \nu}} .
$$

Let u be a function on the standard triangle Ω given as a linear combination of the basis functions, i.e. $u(\xi, \nu)=$ $\sum_{i=1}^{10} u_{i} \Phi_{i}(\xi, \nu)$, where the basis function $\Phi_{i}(\xi, \nu)$ are given by (50). Then its gradient with respect to ξ and ν can be determined with the help of elementary partial derivatives applied to the expressions in (50). The results are

$$
\vec{\Phi}_{\xi}(\xi, \nu)=\frac{\partial}{\partial \xi} \vec{\Phi}(\xi, \nu)=\left(\begin{array}{c}
-\frac{11}{2}+18 \xi+18 \nu-\frac{27}{2} \xi^{2}-27 \xi \nu-\frac{27}{2} \nu^{2} \tag{53}\\
1-9 \xi+\frac{27}{2} \xi^{2} \\
0 \\
-\frac{9}{2} \nu+27 \xi \nu \\
-\frac{9}{2} \nu+\frac{27}{2} \nu^{2} \\
\frac{9}{2} \nu-\frac{27}{2} \nu^{2} \\
-\frac{45}{2} \nu+27 \xi \nu+27 \nu^{2} \\
9-45 \xi-\frac{45}{2} \nu+\frac{81}{2} \xi^{2}+54 \xi \nu+\frac{27}{2} \nu^{2} \\
-\frac{9}{2}+36 \xi+\frac{9}{2} \nu-\frac{81}{2} \xi^{2}-27 \xi \nu \\
27 \nu-54 \xi \nu-27 \nu^{2}
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
-\frac{11}{2}+18 \xi+18 \nu-\frac{27}{2} \xi^{2}-27 \xi \nu-\frac{27}{2} \nu^{2} \tag{54}\\
0 \\
1-9 \nu+\frac{27}{2} \nu^{2} \\
-\frac{9}{2} \xi+\frac{27}{2} \xi^{2} \\
-\frac{9}{2} \xi+27 \xi \nu \\
-\frac{9}{2}+\frac{9}{2} \xi+36 \nu-27 \xi \nu-\frac{81}{2} \nu^{2} \\
9-\frac{45}{2} \xi-45 \nu+\frac{27}{2} \xi^{2}+54 \xi \nu+\frac{81}{2} \nu^{2} \\
-\frac{45}{2} \xi+27 \xi^{2}+27 \xi \nu \\
+\frac{9}{2} \xi-\frac{27}{2} \xi^{2} \\
27 \xi-27 \xi^{2}-54 \xi \nu
\end{array}\right) .
$$

Thus find on the standard triangle Ω

$$
\left(\frac{\partial u}{\partial \xi}, \frac{\partial u}{\partial \nu}\right)=\left(u_{1}, u_{2}, \ldots, u_{10}\right) \cdot\left[\begin{array}{cc}
\vec{\Phi}_{\xi}(\xi, \nu) & \vec{\Phi}_{\nu}(\xi, \nu)
\end{array}\right]=\vec{u}^{T} \cdot\left[\begin{array}{cc}
\vec{\Phi}_{\xi}(\xi, \nu) & \vec{\Phi}_{\nu}(\xi, \nu)
\end{array}\right]
$$

For a function $\varphi(x, y)=\sum_{i=1}^{10} \varphi_{i} \Phi_{i}(\xi(x, y), \nu(x, y))$ use the above to conclude

$$
\binom{\frac{\partial \varphi}{\partial x}}{\frac{\partial \varphi}{\partial y}}=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\begin{array}{ll}
+y_{3}-y_{1} & -y_{2}+y_{1} \\
-x_{3}+x_{1} & +x_{2}-x_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
\vec{\Phi}_{\xi}^{T} \\
\vec{\Phi}_{\nu}^{T}
\end{array}\right] \cdot \vec{\varphi}
$$

or spelled out for the two components independently

$$
\begin{aligned}
\frac{\partial \varphi}{\partial x} & =\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+y_{3}-y_{1}\right) \vec{\Phi}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \vec{\Phi}_{\nu}^{T}\right] \cdot \vec{\varphi} \\
\frac{\partial \varphi}{\partial y} & =\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-x_{3}+x_{1}\right) \vec{\Phi}_{\xi}^{T}+\left(+x_{2}-x_{1}\right) \vec{\Phi}_{\nu}^{T}\right] \cdot \vec{\varphi}
\end{aligned}
$$

For the numerical integration use the values of the gradients at the Gauss integration points $\vec{g}_{j}=\left(\xi_{j}, \nu_{j}\right)$. Using expression (50) the values of the function φ at the Gauss points can be computed with the help of the interpolation matrix

M byc

$$
\left(\begin{array}{c}
\varphi\left(\vec{g}_{1}\right) \\
\varphi\left(\vec{g}_{2}\right) \\
\vdots \\
\varphi\left(\vec{g}_{7}\right)
\end{array}\right)=\mathbf{M} \cdot\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\vdots \\
\varphi_{10}
\end{array}\right)
$$

Similarly, using (53) and (54), define the interpolation matrices for the partial derivatives.

$$
\frac{\partial}{\partial \xi}\left(\begin{array}{c}
\varphi\left(\vec{g}_{1}\right) \tag{55}\\
\varphi\left(\vec{g}_{2}\right) \\
\vdots \\
\varphi\left(\vec{g}_{7}\right)
\end{array}\right)=\mathbf{M}_{\xi} \cdot\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\vdots \\
\varphi_{10}
\end{array}\right) \quad \text { and } \quad \frac{\partial}{\partial \nu}\left(\begin{array}{c}
\varphi\left(\vec{g}_{1}\right) \\
\varphi\left(\vec{g}_{2}\right) \\
\vdots \\
\varphi\left(\vec{g}_{7}\right)
\end{array}\right)=\mathbf{M}_{\nu} \cdot\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\vdots \\
\varphi_{10}
\end{array}\right)
$$

Approximate values are

$$
\mathbf{M}_{\xi} \approx\left[\begin{array}{cccccccccc}
-2.408 & 0.227 & 0 & -0.179 & -0.317 & 0.317 & -1.725 & 3.271 & -1.090 & 1.904 \\
-0.227 & 2.408 & 0 & 1.725 & -0.317 & 0.317 & 0.179 & 1.090 & -3.271 & -1.904 \\
-0.227 & 0.227 & 0 & -1.408 & 4.996 & -4.996 & 1.408 & -0.138 & 0.138 & 0 \\
-0.511 & -0.247 & 0 & 3.852 & 0.868 & -0.868 & 1.358 & 1.137 & -0.379 & -5.210 \\
0.247 & 0.511 & 0 & -1.358 & 0.868 & -0.868 & -3.852 & 0.379 & -1.137 & 5.210 \\
0.247 & -0.247 & 0 & 0.489 & -0.221 & 0.221 & -0.489 & -2.984 & 2.984 & 0 \\
0.500 & -0.500 & 0 & 1.500 & 0 & 0 & -1.500 & -1.500 & 1.500 & 0
\end{array}\right]
$$

and

$$
\mathbf{M}_{\nu} \approx\left[\begin{array}{cccccccccc}
-2.269 & 0 & 0.227 & -0.317 & -0.179 & -1.090 & 3.271 & -1.725 & 0.317 & 1.904 \\
0.863 & 0 & 0.227 & 4.996 & -1.408 & 0.138 & -0.138 & 1.408 & -4.996 & 0 \\
0.863 & 0 & 2.408 & -0.317 & 1.725 & -3.271 & 1.090 & 0.179 & 0.317 & -1.904 \\
2.473 & 0 & -0.247 & 0.868 & 3.852 & -0.379 & 1.137 & 1.358 & -0.868 & -5.210 \\
0.626 & 0 & -0.247 & -0.221 & 0.489 & 2.984 & -2.984 & -0.489 & 0.221 & 0 \\
0.626 & 0 & 0.511 & 0.868 & -1.358 & -1.137 & 0.379 & -3.852 & -0.868 & 5.210 \\
2.000 & 0 & -0.500 & 0 & 1.500 & 1.500 & -1.500 & -1.500 & 0 & 0
\end{array}\right] .
$$

The matrices \mathbf{M}_{ξ} and \mathbf{M}_{ν} allow to compute the values of the partial derivatives at the Gauss points in the standard triangle Ω and they are independent on the general triangle E.

Combining the above two computations use the notation

$$
\vec{x}_{i}=\binom{x_{1}}{y_{1}}+\mathbf{T} \cdot\binom{\xi_{i}}{\nu_{i}} \quad \text { for } \quad i=1,2,3, \ldots, 7
$$

and find for the first component $\varphi_{x}=\frac{\partial \varphi}{\partial x}$ of the gradient at the Gauss points

$$
\left(\begin{array}{c}
\varphi_{x}\left(\vec{x}_{1}\right) \\
\varphi_{x}\left(\vec{x}_{2}\right) \\
\vdots \\
\varphi_{x}\left(\vec{x}_{7}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+y_{3}-y_{1}\right) \mathbf{M}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}
$$

and for the second component of the gradient

$$
\left(\begin{array}{c}
\varphi_{y}\left(\vec{x}_{1}\right) \\
\varphi_{y}\left(\vec{x}_{2}\right) \\
\vdots \\
\varphi_{y}\left(\vec{x}_{7}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}^{T}+\left(+x_{2}-x_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}
$$

The above results for \mathbf{M}_{ξ} and \mathbf{M}_{ν} can be coded in Octave and then used to compute the element stiffness matrix.

6.6.5 Integration of $u \vec{b} \cdot \nabla \phi$ and $a \nabla u \cdot \nabla \phi$

The vector function $\vec{b}(\vec{x})$ has to be evaluated at the Gauss integration points \vec{g}_{j}. Then the integration of

$$
\iint_{E} u \vec{b} \nabla \phi d A=\iint_{E} u b_{1} \frac{\partial \phi}{\partial x} d A+\iint_{E} u b_{2} \frac{\partial \phi}{\partial y} d A
$$

is approximated by

$$
\begin{aligned}
& \iint_{E} u b_{1} \frac{\partial \phi}{\partial x} d A \approx \frac{|\operatorname{det} \mathbf{T}|}{\operatorname{det} \mathbf{T}}\left\langle\left(\left(y_{3}-y_{1}\right) \mathbf{M}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}^{T}\right) \cdot \operatorname{diag}\left(\overrightarrow{w b_{1}}\right) \cdot \mathbf{M} \cdot \vec{u}, \vec{\phi}\right\rangle \\
& \iint_{E} u b_{2} \frac{\partial \phi}{\partial y} d A \approx \frac{|\operatorname{det} \mathbf{T}|}{\operatorname{det} \mathbf{T}}\left\langle\left(\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}^{T}+\left(x_{2}-x_{1}\right) \mathbf{M}_{\nu}^{T}\right) \cdot \operatorname{diag}\left(\overrightarrow{w b_{2}}\right) \cdot \mathbf{M} \cdot \vec{u}, \vec{\phi}\right\rangle .
\end{aligned}
$$

The function $a \nabla u \cdot \nabla \phi=a\left(\frac{\partial u}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial \phi}{\partial y}\right)$ has to be evaluated at the Gauss integration points \vec{g}_{j}, then multiplied by the Gauss weights w_{i} and added up. Use the vector $\overrightarrow{w a}$ with the values of the function $a\left(x_{i}, y_{i}\right)$ and the weights w_{i} at the Gauss points to obtain

$$
\begin{aligned}
\iint_{E} a \frac{\partial u(\vec{x})}{\partial x} \frac{\partial \phi(\vec{x})}{\partial x} d A & =|\operatorname{det} \mathbf{T}| \iint_{\Omega} a(\vec{x}(\xi, \nu)) \frac{\partial u(\vec{x}(\xi, \nu))}{\partial x} \frac{\partial \phi(\vec{x}(\xi, \nu))}{\partial x} d \xi d \nu \\
& \approx \frac{|\operatorname{det} \mathbf{T}|}{(\operatorname{det} \mathbf{T})^{2}}\left\langle\mathbf{A}_{x} \cdot \vec{u}, \vec{\phi}\right\rangle=\frac{1}{|\operatorname{det} \mathbf{T}|}\left\langle\mathbf{A}_{x} \cdot \vec{u}, \vec{\phi}\right\rangle \\
\iint_{E} a \frac{\partial u(\vec{x})}{\partial y} \frac{\partial \phi(\vec{x})}{\partial y} d A & =|\operatorname{det} \mathbf{T}| \iint_{\Omega} a(\vec{x}(\xi, \nu)) \frac{\partial u(\vec{x}(\xi, \nu))}{\partial y} \frac{\partial \phi(\vec{x}(\xi, \nu))}{\partial y} d \xi d \nu \\
& \approx \frac{|\operatorname{det} \mathbf{T}|}{(\operatorname{det} \mathbf{T})^{2}}\left\langle\mathbf{A}_{y} \cdot \vec{u}, \vec{\phi}\right\rangle=\frac{1}{|\operatorname{det} \mathbf{T}|}\left\langle\mathbf{A}_{y} \cdot \vec{u}, \vec{\phi}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{A}_{x}=\left[\left(+y_{3}-y_{1}\right) \mathbf{M}_{\xi}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}\right]^{T} \cdot \operatorname{diag}(\overrightarrow{w a}) \cdot\left[\left(+y_{3}-y_{1}\right) \mathbf{M}_{\xi}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}\right] \\
& \mathbf{A}_{y}=\left[\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}+\left(+x_{2}-x_{1}\right) \mathbf{M}_{\nu}\right]^{T} \cdot \operatorname{diag}(\overrightarrow{w a}) \cdot\left[\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}+\left(+x_{2}-x_{1}\right) \mathbf{M}_{\nu}\right] .
\end{aligned}
$$

6.6.6 Partial derivatives at the nodes

For post processing one also needs the partial derivatives of the function at the nodes. On the standard triangle Ω use the formulas for the partial derivatives of the basis functions in expressions (53) and (54) to find them at the nodes, given by the
(ξ, ν) coordinates in Table 15 for cubic elements.

$$
\left(\begin{array}{c}
\varphi_{\xi}\left(\xi_{1}, \nu_{1}\right) \\
\varphi_{\xi}\left(\xi_{2}, \nu_{2}\right) \\
\varphi_{\xi}\left(\xi_{3}, \nu_{3}\right) \\
\varphi_{\xi}\left(\xi_{4}, \nu_{4}\right) \\
\varphi_{\xi}\left(\xi_{5}, \nu_{5}\right) \\
\varphi_{\xi}\left(\xi_{6}, \nu_{6}\right) \\
\varphi_{\xi}\left(\xi_{7}, \nu_{7}\right) \\
\varphi_{\xi}\left(\xi_{8}, \nu_{8}\right) \\
\varphi_{\xi}\left(\xi_{9}, \nu_{9}\right) \\
\varphi_{\xi}\left(\xi_{10}, \nu_{10}\right)
\end{array}\right)=\left[\begin{array}{cccccccc}
\frac{-11}{2} & 1 & 0 & 0 & 0 & 0 & 0 & 9 \\
\frac{-9}{2} & 0 \\
-1 & \frac{11}{2} & 0 & 0 & 0 & 0 & 0 & \frac{9}{2} \\
-9 & 0 \\
-1 & 1 & 0 & \frac{-9}{2} & 9 & -9 & \frac{9}{2} & 0 \\
-1 & 1 & 0 & \frac{9}{2} & 0 & 0 & \frac{3}{2} & 3 \\
-3 & 0 \\
-1 & \frac{-1}{2} & 0 & 3 & 3 & -3 & 3 & \frac{3}{2} \\
0 & 0 & -6 \\
\frac{1}{2} & 1 & 0 & -3 & 3 & -3 & -3 & 0 \\
\frac{-3}{2} & 6 \\
-1 & 1 & 0 & \frac{-3}{2} & 0 & 0 & \frac{-9}{2} & 3 \\
-3 & 6 \\
-1 & \frac{-1}{2} & 0 & 0 & 0 & 0 & 0 & \frac{-3}{2} \\
3 & 0 \\
\frac{1}{2} & 1 & 0 & 0 & 0 & 0 & 0 & -3 \\
\frac{3}{2} & 0 \\
\frac{1}{2} & \frac{-1}{2} & 0 & \frac{3}{2} & 0 & 0 & \frac{-3}{2} & \frac{-3}{2} \\
\frac{3}{2} & 0
\end{array}\right]\left(\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4} \\
\varphi_{5} \\
\varphi_{6} \\
\varphi_{7} \\
\varphi_{8} \\
\varphi_{9} \\
\varphi_{10}
\end{array}\right)=\mathbf{N}_{\xi}\left(\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4} \\
\varphi_{5} \\
\varphi_{6} \\
\varphi_{7} \\
\varphi_{8} \\
\varphi_{9} \\
\varphi_{10}
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
\varphi_{\nu}\left(\xi_{1}, \nu_{1}\right) \\
\varphi_{\nu}\left(\xi_{2}, \nu_{2}\right) \\
\varphi_{\nu}\left(\xi_{3}, \nu_{3}\right) \\
\varphi_{\nu}\left(\xi_{4}, \nu_{4}\right) \\
\varphi_{\nu}\left(\xi_{5}, \nu_{5}\right) \\
\varphi_{\nu}\left(\xi_{6}, \nu_{6}\right) \\
\varphi_{\nu}\left(\xi_{7}, \nu_{7}\right) \\
\varphi_{\nu}\left(\xi_{8}, \nu_{8}\right) \\
\varphi_{\nu}\left(\xi_{9}, \nu_{9}\right) \\
\varphi_{\nu}\left(\xi_{10}, \nu_{10}\right)
\end{array}\right)=\left[\begin{array}{cccccccc}
\frac{-11}{2} & 0 & 1 & 0 & 0 & \frac{-9}{2} & 9 & 0 \\
0 & 0 \\
-1 & 0 & 1 & 9 & \frac{-9}{2} & 0 & 0 & \frac{9}{2} \\
-9 & 0 \\
-1 & 0 & \frac{11}{2} & 0 & 0 & -9 & \frac{9}{2} & 0 \\
-1 & 0 & \frac{-1}{2} & 3 & 3 & 0 & \frac{3}{2} & 3 \\
-3 & 0 \\
-1 & 0 & 1 & 0 & \frac{9}{2} & -3 & 3 & \frac{3}{2} \\
0 & -6 \\
\frac{1}{2} & 0 & 1 & 0 & 0 & \frac{3}{2} & -3 & 0 \\
0 & 0 \\
-1 & 0 & \frac{-1}{2} & 0 & 0 & 3 & \frac{-3}{2} & 0 \\
0 & 0 \\
-1 & 0 & 1 & 0 & \frac{-3}{2} & -3 & 3 & \frac{-9}{2} \\
0 & 6 \\
\frac{1}{2} & 0 & 1 & 3 & -3 & \frac{-3}{2} & 0 & -3 \\
\frac{1}{2} & 0 & \frac{-1}{2} & 0 & \frac{3}{2} & \frac{3}{2} & \frac{-3}{2} & \frac{-3}{2} \\
\frac{1}{2} & 6 & 0
\end{array}\right]\left(\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4} \\
\varphi_{5} \\
\varphi_{6} \\
\varphi_{7} \\
\varphi_{8} \\
\varphi_{9} \\
\varphi_{10}
\end{array}\right)=\mathbf{N}_{\nu}\left(\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\varphi_{4} \\
\varphi_{5} \\
\varphi_{6} \\
\varphi_{7} \\
\varphi_{8} \\
\varphi_{9} \\
\varphi_{10}
\end{array}\right)
$$

Now use the transformation formulas (45) and (46) to determine the gradient of a function on the general triangle

$$
\varphi(x, y)=\sum_{i=1}^{10} \varphi_{i} \Phi_{i}(\xi(x, y), \nu(x, y))
$$

at the nodes $\left(x_{i}, y_{i}\right)$ in the general triangle E, leading to

$$
\begin{aligned}
& \left(\begin{array}{c}
\varphi_{x}\left(x_{1}, y_{1}\right) \\
\varphi_{x}\left(x_{2}, y_{2}\right) \\
\vdots \\
\varphi_{x}\left(x_{10}, y_{10}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+y_{3}-y_{1}\right) \mathbf{N}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \mathbf{N}_{\nu}^{T}\right] \cdot \vec{\varphi} \\
& \left(\begin{array}{c}
\varphi_{y}\left(x_{1}, y_{1}\right) \\
\varphi_{y}\left(x_{2}, y_{2}\right) \\
\vdots \\
\varphi_{y}\left(x_{10}, y_{10}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-x_{3}+x_{1}\right) \mathbf{N}_{\xi}^{T}+\left(+x_{2}-x_{1}\right) \mathbf{N}_{\nu}^{T}\right] \cdot \vec{\varphi} .
\end{aligned}
$$

These results are useful to evaluate the gradient at the nodes. Observe that the results depends on the triangle used for the interpolation and a node is typically member of more than one triangle.

6.6.7 Integration over boundary segments

In expression (31) integrals over the section Γ_{2} of the boundary are required.

$$
\int_{\Gamma_{2}} \phi\left(g_{2}+g_{3} u\right) d s
$$

For triangular domains the boundary consists of straight line segments. Thus replace the integral by a sum of line integrals and use a Gauss integration. Based on the two endpoints \vec{x}_{1} and \vec{x}_{3} and the midpoint $\vec{x}_{2}=\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{3}\right)$ use the values at three Gauss integration points.

Figure 79: The interpolation from four nodes to three Gauss points on an interval $\left[-\frac{h}{2},+\frac{h}{2}\right]$

Based on

$$
\begin{aligned}
\int_{-h / 2}^{h / 2} f(x) d x & \approx \frac{h}{18}\left(5 f\left(-\frac{\sqrt{3}}{2 \sqrt{5}} h\right)+8 f(0)+5 f\left(\frac{\sqrt{3}}{2 \sqrt{5}} h\right)\right) \\
& =\frac{h}{18}\left(5 f\left(-\frac{\sqrt{15}}{10} h\right)+8 f(0)+5 f\left(\frac{\sqrt{15}}{10} h\right)\right)
\end{aligned}
$$

polynomials up to degree 5 are integrated exactly, thus the error on one interval is proportional to h^{7}. To evaluate a function at the Gauss points

$$
\begin{aligned}
& \vec{p}_{1}=\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{4}\right)-\frac{\sqrt{3}}{2 \sqrt{5}}\left(\vec{x}_{4}-\vec{x}_{1}\right) \\
& \vec{p}_{2}=\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{4}\right) \\
& \vec{p}_{3}=\frac{1}{2}\left(\vec{x}_{1}+\vec{x}_{4}\right)+\frac{\sqrt{3}}{2 \sqrt{5}}\left(\vec{x}_{4}-\vec{x}_{1}\right)
\end{aligned}
$$

use a cubic interpolation of a function with $f_{-2}=f(-h / 2), f_{-1}=f(-h / 6), f_{+1}=f(+h / 6)$ and $f_{+2}=f(+h / 2)$. Required are the values at $x=0$ and $x= \pm \frac{\sqrt{15}}{10} h \approx \pm 0.387 h$. This is illustrated in Figure 79 with the values of the function $f(x)$ indicated by red spots and the interpolation position and values in green. The computations are tedious shown at the end of this section in Subsection 6.6.8 and lead to

$$
\left(\begin{array}{c}
u\left(\vec{p}_{1}\right) \\
u\left(\vec{p}_{2}\right) \\
u\left(\vec{p}_{3}\right)
\end{array}\right)=\mathbf{M}_{B}\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right) \approx\left[\begin{array}{cccc}
0.4880 & 0.7479 & -0.2979 & 0.06199 \\
-0.0625 & 0.5625 & 0.5625 & -0.0625 \\
0.06199 & -0.2979 & 0.7479 & 0.4880
\end{array}\right]\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right)
$$

With the length $L=\sqrt{\left(x_{4}-x_{1}\right)^{2}+\left(y_{4}-y_{1}\right)^{2}}$ of the segment this leads to the approximations

$$
\begin{aligned}
& \int_{\text {edge }} \phi g_{2} d s \approx \frac{L}{18}\left\langle\mathbf{M}_{B}\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4}
\end{array}\right),\left(\begin{array}{c}
5 g_{2}\left(\vec{p}_{1}\right) \\
8 g_{2}\left(\vec{p}_{2}\right) \\
5 g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle=\frac{L}{18}\left\langle\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4}
\end{array}\right), \mathbf{M}_{B}^{T}\left(\begin{array}{l}
5 g_{2}\left(\vec{p}_{1}\right) \\
8 g_{2}\left(\vec{p}_{2}\right) \\
5 g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle \\
& \int_{\text {edge }} \phi g_{3} u d s \approx \frac{L}{18}\left\langle\mathbf{M}_{B}\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4}
\end{array}\right),\left[\begin{array}{ccc}
5 g_{3}\left(\vec{p}_{1}\right) & 0 & 0 \\
0 & 8 g_{3}\left(\vec{p}_{2}\right) & 0 \\
0 & 0 & 5 g_{3}\left(\vec{p}_{3}\right)
\end{array}\right] \mathbf{M}_{B}\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)\right\rangle
\end{aligned}
$$

$$
=\frac{L}{18}\left\langle\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4}
\end{array}\right), \mathbf{M}_{B}^{T}\left[\begin{array}{ccc}
5 g_{3}\left(\vec{p}_{1}\right) & 0 & 0 \\
0 & 8 g_{3}\left(\vec{p}_{2}\right) & 0 \\
0 & 0 & 5 g_{3}\left(\vec{p}_{3}\right)
\end{array}\right] \mathbf{M}_{B}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)\right\rangle
$$

The first expression will lead to a contribution to the RHS vector of the linear system to be solved, while the second expression will lead to entries in the matrix. These approximate integrations lead to the exact result if the function to be integrated is a polynomial of degree 5 , or less. If h is the typical length of an edge then the error is of the order h^{7} for one line segment and thus of order h^{6} for the total boundary. This boundary integration is used for third order elements. The second expression is of the form

$$
\int \phi g_{3} u d s \approx\langle\vec{\phi}, \mathbf{B} \vec{u}\rangle=\left\langle\left(\begin{array}{c}
\phi_{2} \\
\phi_{2} \\
\phi_{3} \\
\phi_{4}
\end{array}\right),\left[\begin{array}{cccc}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{34} & b_{44}
\end{array}\right]\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right)\right\rangle
$$

and its effect on the linear system $\mathbf{A} \vec{u}+\mathbf{W} \vec{f}=\overrightarrow{0}$ to be solved depends on nodes being on the Dirichlet section of the boundary or the Neumann section.

- If u_{1} and u_{4} are free, i.e. not on the Dirichlet section, then u_{2} and u_{3} are free too. All entries of the matrix \mathbf{B} have to be added to the global stiffness matrix \mathbf{A}.
- If u_{1} and u_{4} are on the Dirichlet section, then u_{2} and u_{3} are on the Dirichlet section too. Nothing has to be added to A and \vec{f}.
- If u_{1}, u_{2} and u_{3} are free and u_{4} is on the Dirichlet section, then only the first three expressions

$$
\begin{aligned}
& b_{11} u_{1}+b_{12} u_{2}+b_{13} u_{3}+b_{14} u_{4}=b_{11} u_{1}+b_{12} u_{2}+b_{13} u_{3}+b_{14} d_{4} \\
& b_{21} u_{1}+b_{22} u_{2}+b_{23} u_{3}+b_{24} u_{4}=b_{21} u_{1}+b_{22} u_{2}+b_{23} u_{3}+b_{24} d_{4} \\
& b_{31} u_{1}+b_{32} u_{2}+b_{33} u_{3}+b_{34} u_{4}=b_{31} u_{1}+b_{32} u_{2}+b_{33} u_{3}+b_{34} d_{4}
\end{aligned}
$$

have to be taken into account. d_{4} is the Dirichlet value at the position of u_{4}. The contributions $b_{14} d_{4}, b_{24} d_{4}$ and $b_{34} d_{4}$ have to be added to $\mathbf{W} \vec{f}$, the other expressions to \mathbf{A}.

- If u_{2}, u_{3} and u_{4} are free and u_{1} is on the Dirichlet section, then only the least three expressions

$$
\begin{aligned}
& b_{21} u_{1}+b_{22} u_{2}+b_{23} u_{3}+b_{24} u_{4}=b_{21} d_{1}+b_{22} u_{2}+b_{23} u_{3}+b_{24} u_{4} \\
& b_{31} u_{1}+b_{32} u_{2}+b_{33} u_{3}+b_{34} u_{4}=b_{31} d_{1}+b_{32} u_{2}+b_{33} u_{3}+b_{34} u_{4} \\
& b_{41} u_{1}+b_{42} u_{2}+b_{43} u_{3}+b_{44} u_{4}=b_{41} d_{1}+b_{42} u_{2}+b_{43} u_{3}+b_{44} u_{4}
\end{aligned}
$$

have to be taken into account. d_{1} is the Dirichlet value at the position of u_{1}. The contributions $b_{21} d_{1}, b_{31} d_{1}$ and $b_{41} d_{1}$ have to be added to $\mathbf{W} \vec{f}$, the other expressions to \mathbf{A}.

6.6.8 From a polynomial interpolation to the Gauss integration points

For an interval $[-h / 2,+h / 2]$ use a polynomial $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$, leading to

$$
\begin{aligned}
& f_{-2}=p(-h / 2)=c_{0}-\frac{1}{2} h c_{1}+\frac{1}{4} h^{2} c_{2}-\frac{1}{8} h^{3} c_{3} \\
& f_{-1}=p(-h / 6)=c_{0}-\frac{1}{6} h c_{1}+\frac{1}{36} h^{2} c_{2}-\frac{1}{216} h^{3} c_{3} \\
& f_{+1}=p(+h / 6)=c_{0}+\frac{1}{6} h c_{1}+\frac{1}{36} h^{2} c_{2}+\frac{1}{216} h^{3} c_{3} \\
& f_{+2}=p(+h / 2)=c_{0}+\frac{1}{2} h c_{1}+\frac{1}{4} h^{2} c_{2}+\frac{1}{8} h^{3} c_{3}
\end{aligned}
$$

or with a matrix notation

$$
\left[\begin{array}{cccc}
+1 & -\frac{1}{2} & +\frac{1}{4} & -\frac{1}{8} \\
+1 & -\frac{1}{6} & +\frac{1}{36} & -\frac{1}{216} \\
+1 & +\frac{1}{6} & +\frac{1}{36} & +\frac{1}{216} \\
+1 & +\frac{1}{2} & +\frac{1}{4} & +\frac{1}{8}
\end{array}\right]\left(\begin{array}{c}
c_{0} \\
h c_{1} \\
h^{2} c_{2} \\
h^{3} c_{3}
\end{array}\right)=\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right)
$$

The corresponding inverse matrix leads to

$$
\left(\begin{array}{c}
c_{0} \\
h c_{1} \\
h^{2} c_{2} \\
h^{3} c_{3}
\end{array}\right)=\frac{1}{16}\left[\begin{array}{cccc}
-1 & +9 & +9 & -1 \\
+2 & -54 & +54 & -2 \\
+36 & -36 & -36 & +36 \\
-72 & +216 & -216 & +72
\end{array}\right]\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right)
$$

With $\lambda=\frac{\sqrt{15}}{10} \approx 0.3873$ and $p(\lambda h)=c_{0}+\lambda c_{1} h+\lambda^{2} c_{2} h^{2}+\lambda^{3} c_{3} h^{3}$ obtain

$$
\begin{aligned}
p(\lambda h) & =\frac{1}{16}\left[\begin{array}{llll}
1 & \lambda & \lambda^{2} & \lambda^{3}
\end{array}\right]\left[\begin{array}{cccc}
-1 & +9 & +9 & -1 \\
+2 & -54 & +54 & -2 \\
+36 & -36 & -36 & +36 \\
-72 & +216 & -216 & +72
\end{array}\right]\left(\begin{array}{l}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right) \\
\left(\begin{array}{c}
p(-\lambda h) \\
p(0) \\
p(+\lambda h)
\end{array}\right) & =\frac{1}{16}\left[\begin{array}{cccc}
1 & -\lambda & \lambda^{2} & -\lambda^{3} \\
1 & 0 & 0 & 0 \\
1 & +\lambda & \lambda^{2} & +\lambda^{3}
\end{array}\right]\left[\begin{array}{cccc}
-1 & +9 & +9 & -1 \\
+2 & -54 & +54 & -2 \\
+36 & -36 & -36 & +36 \\
-72 & +216 & -216 & +72
\end{array}\right]\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right) \\
& =\mathbf{M}_{B}\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right) \approx\left[\begin{array}{cccc}
0.4880 & 0.7479 & -0.2979 & 0.06199 \\
-0.0625 & 0.5625 & 0.5625 & -0.0625 \\
0.06199 & -0.2979 & 0.7479 & 0.4880
\end{array}\right]\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right)
\end{aligned}
$$

This matrix \mathbf{M}_{B} is used on the segments of the boundary to determine the values at the Gauss integration points, given the values of the four nodes of a third order element.

6.7 Convergence of the approximate solutions u_{h} to the exact solution u

A key feature of a good FEM algorithm is a rapid convergence. As the diameter h of the triangles converges to 0 , the approximate solution $u_{h}(x, y)$ should converge to the exact solution $u(x, y)$. The statements below are correct for very smooth exact solutions and "nice" domains. Find more information in books on the mathematical background of FEM, e.g. [AxelBark84] or consult [Stah08].

It is convenient to state the approximation results using two norms on the function space $L_{2}(\Omega)$ and the Sobolev space $V=H^{1}(\Omega)=W^{1,2}(\Omega)$. The norms are given by

$$
\|u\|_{2}^{2}=\iint_{\Omega} u^{2}(x, y) d A \quad \text { and } \quad\|u\|_{V}^{2}=\iint_{\Omega} u^{2}(x, y)+\|\nabla u(x, y)\|^{2} d A
$$

The convergence results assume that the meshes are well defined, e.g. satisfy a minimal angle condition. The scalar h is the typical (or maximal) diameter of the triangles used for the mesh.

- If the solutions u_{h} are generated by first order, triangular elements, i.e. piecewise linear functions, then

$$
\left\|u_{h}-u\right\|_{V} \leq C h \quad \text { and } \quad\left\|u_{h}-u\right\|_{2} \leq C_{1} h^{2}
$$

for some constants C and C_{1} independent on h. A short formulation is

- u_{h} converges to u with an error proportional to h^{2} as $h \rightarrow 0$.
- ∇u_{h} converges to ∇u with an error proportional to h as $h \rightarrow 0$.
- If the solutions u_{h} are generated by second order, triangular elements, i.e. piecewise quadratic functions, then

$$
\left\|u_{h}-u\right\|_{V} \leq C h^{2} \quad \text { and } \quad\left\|u_{h}-u\right\|_{2} \leq C_{1} h^{3}
$$

for some constants C and C_{1} independent on h. A short formulation is

- u_{h} converges to u with an error proportional to h^{3} as $h \rightarrow 0$.
- ∇u_{h} converges to ∇u with an error proportional to h^{2} as $h \rightarrow 0$.
- If the solutions u_{h} are generated by third order, triangular elements, i.e. piecewise cubic functions, then

$$
\left\|u_{h}-u\right\|_{V} \leq C h^{3} \quad \text { and } \quad\left\|u_{h}-u\right\|_{2} \leq C_{1} h^{4}
$$

for some constants C and C_{1} independent on h. A short formulation is

- u_{h} converges to u with an error proportional to h^{4} as $h \rightarrow 0$.
- ∇u_{h} converges to ∇u with an error proportional to h^{3} as $h \rightarrow 0$.

Observe that the convergence results are about the integral of differences, and not point-wise estimates. In addition the exact solution u is assumed to be smooth. Thus one has to be careful when using the estimates for problems with limited regularity of the type in Section 9.4.

6.8 Dynamic problems

The are two distinct classes of dynamic problems:

- Parabolic problems with the heat equation $\dot{u}=\Delta u$ as the typical example.
- Hyperbolic problems with the wave equation $\ddot{u}=\Delta u$ as the typical example.

For both types the following sections will present unconditionally stable, consistent time stepping algorithms.

6.8.1 Dynamic problems of the heat equation type

Examine an IBVP (4) of parabolic type.

$$
\begin{aligned}
\rho \frac{\partial}{\partial t} u-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u & =f & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
u & =g_{1} & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \\
\vec{n} \cdot(a \nabla u-u \vec{b}) & =g_{2}+g_{3} u & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \\
u & =u_{0} & & \text { on } \Omega \text { at } t=0
\end{aligned}
$$

First the problem is reduced to a new problem with homogeneous boundary conditions, i.e $g_{1}=g_{2}=0$. Solve the static problem with nonhomogeneous boundary conditions.

$$
\begin{align*}
-\nabla \cdot\left(a \nabla u_{B}-u_{B} \vec{b}\right)+b_{0} u_{B} & =0 & & \text { for } \quad(x, y, t) \in \Omega \\
u_{B} & =g_{1} & & \text { for } \quad(x, y) \in \Gamma_{1} \\
\vec{n} \cdot\left(a \nabla u_{B}+u_{B} \vec{b}\right) & =g_{2}+g_{3} u_{B} & & \text { for } \tag{56}
\end{align*} \quad(x, y, t) \in \Gamma_{2}
$$

Then the new function $v(x, y, t)=u(x, y, t)-u_{B}(x, y)$ is a solution of an initial boundary value problem with no constant boundary contributions, i.e. $g_{1}=g_{2}=0$.

$$
\begin{aligned}
\rho \frac{\partial}{\partial t} v-\nabla \cdot(a \nabla u-v \vec{b})+b_{0} v & =f & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
v & =0 & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \\
\vec{n} \cdot(a \nabla v+v \vec{b}) & =g_{3} v & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \\
v & =u_{0}-u_{B} & & \text { on } \Omega \text { at } t=0
\end{aligned}
$$

This equation is transformed to a system of ordinary differential equations.

$$
\begin{equation*}
\mathbf{W} \frac{d}{d t} \vec{v}(t)+\mathbf{A} \vec{v}(t)=\vec{f}(t) \quad \text { with } \quad \vec{v}(0)=\vec{v}_{0} \tag{57}
\end{equation*}
$$

The implementation assumes that the coefficient functions ρ, a, b_{0}, \vec{b} and g_{i} depend on (x, y), while f may depend on time t and the position (x, y). There are four algorithms for the time stepping available, identical to the solvers for the 1D problem in Section 4.9 on page 71.

- CN: the standard Crank-Nicolson algorithm. This is the default algorithm.
- implicit: the standard implicit solver.
- explicit: the standard explicit solver.
- RK: an implicit Runge-Kutta algorithm.

Some documation on these standard algorithms is shown in Section 7.6 on page 177.
For the command IBVP2D () the Crank-Nicolson approximation can be used to advance the solution of the ODE (57) from time t to $t+\Delta t$. Approximate the time derivative in (57) by a centered difference formula.

$$
\begin{aligned}
\mathbf{W} \frac{\vec{v}(t+\Delta t)-\vec{v}(t)}{\Delta t} & =-\mathbf{A} \frac{\vec{v}(t+\Delta t)+\vec{v}(t)}{2}+\vec{f}(t+\Delta t / 2) \\
\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \vec{v}(t+\Delta t) & =+\left(\mathbf{W}-\frac{\Delta t}{2} \mathbf{A}\right) \vec{v}(t)+\Delta t \vec{f}(t+\Delta t / 2)
\end{aligned}
$$

For each time step a linear system has to be solved. Observe that the matrix on the left does not change as time advances. Using an sparsity preserving LU factorization of the matrix on the left, these systems can be solved efficiently. The matrices \mathbf{P} and \mathbf{Q} are permutation matrices with $\mathbf{P}^{-1}=\mathbf{P}^{T}$. A substantial amount of time has to be used to perform the LU factorization, but then the time stepping is fast.

$$
\begin{array}{rlrl}
\mathbf{P}\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \mathbf{Q} & =\mathbf{L} \mathbf{U} & \text { LU factorization } \\
\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \vec{v} & =\vec{b} & & \text { system to be solved } \\
\mathbf{P}\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \mathbf{Q}^{-1} \vec{v} & =\mathbf{P} \vec{b} & \\
\mathbf{L} \mathbf{U ~ Q}^{-1} \vec{v} & =\mathbf{P} \vec{b} & \\
\vec{v} & =\mathbf{Q}(\mathbf{U} \backslash(\mathbf{L} \backslash(\mathbf{P} \vec{b}))) & & \text { in the Octave code }
\end{array}
$$

With the computed $\vec{v}(t)$ then find the solution $\vec{u}(t)=\vec{v}(t)+\vec{u}_{B}$ of the original problem. This is the default algorithm used with the command IBVP2D ().

If the matrix \mathbf{A} is symmetric and positive definite one can use Cholesky factorization with row and column permutations to preserve the sparsity, as much as possible. This should be faster than a LU factorization. The Cholesky factorization is used with the command IBVP2Dsym ().

$$
\begin{aligned}
\mathbf{Q}^{T}\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \mathbf{Q} & =\mathbf{R}^{T} \mathbf{R} & & \text { Cholesky factorizat } \\
\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \vec{v} & =\vec{b} & & \text { system to be solved } \\
\mathbf{Q}^{T}\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \mathbf{Q} \mathbf{Q}^{T} \vec{v} & =\mathbf{Q}^{T} \vec{b} & & \\
\mathbf{R}^{T} \mathbf{R} \mathbf{Q}^{T} \vec{v} & =\mathbf{Q}^{T} \vec{b} & & \\
\vec{v} & =\mathbf{Q}\left(\mathbf{R} \backslash\left(\mathbf{R}^{T} \backslash\left(\mathbf{Q}^{T} \vec{b}\right)\right)\right) & & \text { in the Octave code }
\end{aligned}
$$

The Octave manual claims that a lower Cholesky factorization is often faster.

$$
\begin{aligned}
\mathbf{Q}^{T}\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \mathbf{Q} & =\mathbf{L} \mathbf{L}^{T} & & \text { lower Cholesky factorization } \\
\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \vec{v} & =\vec{b} & & \text { system to be solved } \\
\mathbf{Q}^{T}\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \mathbf{Q} \mathbf{Q}^{T} \vec{v} & =\mathbf{Q}^{T} \vec{b} & & \\
\mathbf{L} \mathbf{L}^{T} \mathbf{Q}^{T} \vec{v} & =\mathbf{Q}^{T} \vec{b} & & \\
\vec{v} & =\mathbf{Q}\left(\mathbf{L}^{T} \backslash\left(\mathbf{L} \backslash\left(\mathbf{Q}^{T} \vec{b}\right)\right)\right) & & \text { in the Octave code }
\end{aligned}
$$

6.8.2 Using eigenvalues for dynamic problems of the heat equation type

With equation (57) for $\vec{f}=\overrightarrow{0}$

$$
\mathbf{W} \frac{d}{d t} \vec{v}(t)+\mathbf{A} \vec{v}(t)=\overrightarrow{0} \quad \text { with } \quad \vec{v}(0)=\vec{v}_{0}
$$

observe that a generalized eigenvalue λ with eigenvector \vec{v}, i.e.

$$
\mathbf{A} \vec{v}=\lambda \mathbf{W} \vec{v}
$$

leads to a solution $\vec{u}(t)=c \exp (-\lambda t) \vec{v}$, since

$$
\begin{aligned}
\mathbf{W} \frac{d}{d t} \vec{u}(t) & =-\lambda \mathbf{W} \vec{v} \exp (-\lambda t) \\
\mathbf{A} \vec{u}(t) & =+\lambda \mathbf{W} \vec{v} \exp (-\lambda t)
\end{aligned}
$$

Thus for $\lambda>0$ find an exponentially decaying solution of the IBVP.

6.8.3 Dynamic problems of the wave equation type

Examine an IBVP (6) of hyperbolic type.

$$
\begin{array}{rlrl}
\rho \frac{\partial^{2}}{\partial t^{2}} u+2 \alpha \frac{\partial}{\partial t} u-\nabla \cdot(a \nabla u-u \vec{b})+b_{0} u & & f & \\
u & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
& =g_{1} & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \\
\vec{n} \cdot(a \nabla u-u \vec{b}) & =g_{2}+g_{3} u & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \\
u & =u_{0} & & \text { on } \Omega \text { at } t=0 \\
\frac{\partial}{\partial t} u & =v_{0} & & \text { on } \Omega \text { at } t=0
\end{array}
$$

First the problem is reduced to a new problem with homogeneous boundary conditions, i.e $g_{1}=g_{2}=0$, using (56). Then the new function $v(x, y, t)=u(x, y, t)-u_{B}(x, y)$ is a solution of an initial boundary value problem with no constant boundary contributions, i.e. $g_{1}=g_{2}=0$.

$$
\begin{aligned}
\rho \frac{\partial^{2}}{\partial t^{2}} v+2 \alpha \frac{\partial}{\partial t} v(t)-\nabla \cdot(a \nabla u-v \vec{b})+b_{0} v & =f & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
v & =0 & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \\
\vec{n} \cdot(a \nabla v-v \vec{b}) & =g_{3} v & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \\
v & =u_{0}-u_{B} & & \text { on } \Omega \text { at } t=0 \\
\frac{\partial}{\partial t} v & =v_{0} & & \text { on } \Omega \text { at } t=0
\end{aligned}
$$

This equation is transformed to a system of ordinary differential equations.

$$
\begin{equation*}
\mathbf{W} \frac{d^{2}}{d t^{2}} \vec{v}(t)+2 \mathbf{D} \frac{d}{d t} \vec{v}(t)+\mathbf{A} \vec{v}(t)=\vec{f}(t) \quad \text { with } \quad \vec{v}(0)=\vec{u}_{0}-\vec{u}_{B}, \quad \frac{d}{d t} \vec{v}(0)=\vec{v}_{0} \tag{58}
\end{equation*}
$$

The implementation assumes that the coefficient functions $\rho, \alpha, a, b_{0}, \vec{b}$ and g_{i} depend on (x, y), while f may depend on time t and the position (x, y). Then use an implicit approximation ${ }^{24}$ to advance the solution from time $t-\Delta t$ and t to $t+\Delta t$.

$$
\begin{aligned}
\mathbf{W} \frac{d^{2}}{d t^{2}} \vec{v}(t)= & -2 \mathbf{D} \frac{d}{d t} \vec{v}(t)-\mathbf{A} \vec{v}(t)+\vec{f}(t) \\
\mathbf{W} \frac{\vec{v}(t-\Delta t)-2 \vec{v}(t)+\vec{v}(t+\Delta t)}{(\Delta t)^{2}}= & -2 \mathbf{D} \frac{\vec{v}(t+\Delta t)-\vec{v}(t-\Delta t)}{2 \Delta t}- \\
& -\mathbf{A} \frac{\vec{v}(t-\Delta t)+2 \vec{v}(t)+\vec{v}(t+\Delta t)}{4}+\vec{f}(t) \\
\left(+\mathbf{W}+\Delta t \mathbf{D}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(t+\Delta t)= & -\left(\mathbf{W}-\Delta t \mathbf{D}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(t-\Delta t)+ \\
& +\left(2 \mathbf{W}-\frac{(\Delta t)^{2}}{2} \mathbf{A}\right) \vec{v}(t)+(\Delta t)^{2} \vec{f}(t)
\end{aligned}
$$

[^17]This scheme is unconditionally stable and consistent of order 2. Observe that the matrices do not change as time advances. Thus use again a sparsity preserving LU factorization for the time stepping. The above scheme is unconditionally stable, at least for constant coefficients ${ }^{25}$.

- To construct the solution at the initial time Δt one could use the initial value u_{0} and initial velocity v_{0} and a scheme with the same order of consistency with respect to time. An explicit scheme for the first step leads to

$$
\begin{aligned}
\frac{d}{d t} \vec{v}(0)= & \vec{v}_{0} \approx \frac{\vec{v}(\Delta t)-\vec{v}(-\Delta t)}{2 \Delta t} \Longrightarrow \vec{v}(-\Delta t) \approx \vec{v}(\Delta t)-2 \Delta t \vec{v}_{0} \\
\mathbf{W} \frac{d^{2}}{d t^{2}} \vec{v}(t)= & -2 \mathbf{D} \frac{d}{d t} \vec{v}(t)-\mathbf{A} \vec{v}(t)+\vec{f}(t) \\
\mathbf{W} \frac{\vec{v}(t-\Delta t)-2 \vec{v}(t)+\vec{v}(t+\Delta t)}{(\Delta t)^{2}}= & -2 \mathbf{D} \frac{\vec{v}(t+\Delta t)-\vec{v}(t-\Delta t)}{2 \Delta t}-\mathbf{A} \vec{v}(t)+\vec{f}(t) \\
(\mathbf{W}+\Delta t \mathbf{D}) \vec{v}(t+\Delta t)= & -(\mathbf{W}-\Delta t \mathbf{D}) \vec{v}(t-\Delta t)+2 \mathbf{W} \vec{v}(t)+(\Delta t)^{2}(-\mathbf{A} \vec{v}(t)+\vec{f}(t)) \\
(\mathbf{W}+\Delta t \mathbf{D}) \vec{v}(\Delta t)= & -(\mathbf{W}-\Delta t \mathbf{D})\left(\vec{v}(\Delta t)-2 \Delta t \vec{v}_{0}\right)+ \\
& +2 \mathbf{W}\left(\vec{u}_{0}-\vec{u}_{B}\right)+(\Delta t)^{2}\left(-\mathbf{A}\left(\vec{u}_{0}-u_{B}\right)+\vec{f}(0)\right) \\
2 \mathbf{W} \vec{v}(\Delta t)= & +2(\mathbf{W}-\Delta t \mathbf{D}) \Delta t \vec{v}_{0}+ \\
& +2 \mathbf{W}\left(\vec{u}_{0}-\vec{u}_{B}\right)+(\Delta t)^{2}\left(-\mathbf{A}\left(\vec{u}_{0}-\vec{u}_{B}\right)+\vec{f}(0)\right) \\
\mathbf{W} \vec{v}(\Delta t)= & (\mathbf{W}-\Delta t \mathbf{D}) \Delta t \vec{v}_{0}+ \\
& +\mathbf{W}\left(\vec{u}_{0}-\vec{u}_{B}\right)+\frac{1}{2}(\Delta t)^{2}\left(-\mathbf{A}\left(\vec{u}_{0}-\vec{u}_{B}\right)+\vec{f}(0)\right) .
\end{aligned}
$$

The conditional stability for this single step might cause numerical trouble.

- One could also use $\vec{v}(-\Delta t) \approx \vec{v}(\Delta t)-2 \Delta t \vec{v}_{0}$ in the implicit scheme at $t=0$.

$$
\begin{aligned}
\left(+\mathbf{W}+\Delta t \mathbf{D}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(\Delta t)= & -\left(\mathbf{W}-\Delta t \mathbf{D}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right)\left(\vec{v}(\Delta t)-2 \Delta t \vec{v}_{0}\right)+ \\
& +\left(2 \mathbf{W}-\frac{(\Delta t)^{2}}{2} \mathbf{A}\right) \vec{v}(0)+(\Delta t)^{2} \vec{f}(0) \\
\left(+2 \mathbf{W}+2 \frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(\Delta t)= & +2 \Delta t\left(\mathbf{W}-\Delta t \mathbf{D}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}_{0}+ \\
& +\left(2 \mathbf{W}-\frac{(\Delta t)^{2}}{2} \mathbf{A}\right) \vec{v}(0)+(\Delta t)^{2} \vec{f}(0) \\
\left(+\mathbf{W}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(\Delta t)= & +\Delta t\left(\mathbf{W}-\Delta t \mathbf{D}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}_{0}+ \\
& +\left(\mathbf{W}-\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(0)+\frac{(\Delta t)^{2}}{2} \vec{f}(0)
\end{aligned}
$$

This initial step requires solving a new system of linear equations. If there is no damping term $(\mathbf{D}=0)$ it is the same system as for the time stepping, thus is used.

The above implicit solver is the default for the algorithm in I2BVP2D (). It is very similar to the algorithm in Section 7.7.1 for 1D problems. In addition an explicit solver is available in I2BVP2D () too, with the description in Section 7.7.2.

6.8.4 Using eigenvalues for dynamic problems of the wave equation type

With equation (58) for $\vec{f}=\overrightarrow{0}$ and a damping factor $D \mathbf{W}$ with a constant $D \geq 0$ (instead of the matrix \mathbf{D})

$$
\begin{equation*}
\mathbf{W} \frac{d^{2}}{d t^{2}} \vec{v}(t)+2 D \mathbf{W} \frac{d}{d t} \vec{v}(t)+\mathbf{A} \vec{v}(t)=\overrightarrow{0} \tag{59}
\end{equation*}
$$

[^18]observe that a generalized eigenvalue $\lambda>0$ with eigenvector \vec{v}, i.e. $\mathbf{A} \vec{v}=\lambda \mathbf{W} \vec{v}$ and weak damping $0 \leq D<\sqrt{\lambda}$ leads to a solution $\vec{u}(t)=\exp (\mu t) \vec{v}$ with $\mu \in \mathbb{C}$, since
\[

$$
\begin{aligned}
\overrightarrow{0} & =\mu^{2} \mathbf{W} \vec{v} \exp (\mu t)+\mu 2 D \mathbf{W} \vec{v} \exp (\mu t)+\lambda \mathbf{W} \vec{v} \exp (\mu t) \\
0 & =\mu^{2}+\mu 2 D+\lambda \\
\mu_{1,2} & =\frac{1}{2}\left(-2 D \pm \sqrt{4 D^{2}-4 \lambda}\right)=-D \pm i \sqrt{\lambda-D^{2}} \in \mathbb{C}
\end{aligned}
$$
\]

Thus the real solutions are of the form

$$
\vec{u}(t)=\exp (-D t)\left(\vec{v}_{1} \cos \left(\sqrt{\lambda-D^{2}} t\right)+\vec{v}_{2} \sin \left(\sqrt{\lambda-D^{2}} t\right)\right)
$$

The angular velocity of the exponentially decaying oscillations is given by $\omega=\sqrt{\lambda-D^{2}}$.

- For the case of strong damping $D>\sqrt{\lambda}$ use

$$
\mu_{1,2}=-D \pm \sqrt{D^{2}-\lambda} \in \mathbb{R}
$$

to find two exponentially decaying solutions

$$
\vec{u}(t)=c_{1} \exp \left(-D+\sqrt{D^{2}-\lambda} t\right) \vec{v}_{1}+c_{2} \exp \left(-D-\sqrt{D^{2}-\lambda} t\right) \vec{v}_{2} .
$$

- If the damping term is not in the special form $D \mathbf{W} \frac{d}{d t} \vec{v}(t)$ the above, simple approach does not work. Instead replace equation (59) by the first order system

$$
\frac{d}{d t}\binom{v(t)}{\mathbf{W} \frac{d}{d t} \vec{v}(t)}=\binom{\frac{d}{d t} \vec{v}(t)}{-2 \mathbf{D} \frac{d}{d t} \vec{v}(t)-\mathbf{A} \vec{v}(t)}
$$

or with a matrix notation

$$
\frac{d}{d t}\left[\begin{array}{cc}
\mathbb{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{W}
\end{array}\right]\binom{v(t)}{\frac{d}{d t} \vec{v}(t)}=\left[\begin{array}{cc}
\mathbf{0} & \mathbb{I} \\
-\mathbf{A} & -2 \mathbf{D}
\end{array}\right]\binom{v(t)}{\frac{d}{d t} \vec{v}(t)}
$$

Thus the generalized eigenvalues of

$$
\left[\begin{array}{cc}
\mathbf{0} & \mathbb{I} \\
-\mathbf{A} & -2 \mathbf{D}
\end{array}\right] \vec{x}=\lambda\left[\begin{array}{cc}
\mathbb{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{W}
\end{array}\right] \vec{x}
$$

provide information on the behavior of the solutions of the wave equation. This is not implemented in FEMoctave.

6.9 Inverse power iteration or eigs () to determine small eigenvalues of positive definite matrices

The algorithm to solve the generalized eigenvalue problem

$$
\mathbf{A} \vec{x}=\lambda \mathbf{B} \vec{x}
$$

for given, positive definite matrices \mathbf{A} and \mathbf{B} is based on inverse power iteration. A small number of the smallest eigenvalues can be estimated with reasonable efficiency. This algorithm imposes some restrictions though:

- Both matrices \mathbf{A} and \mathbf{B} have to be symmetric and strictly positive definite.
- Only very few eigenvalues and eigenvectors should be computed. The convergence rate for too many eigenvalues is unacceptable.
- There are obvious improvements possible, but I hope for an Octave implementation of the command eigs (). This is the case now, thus I use eigs (). Thus some of the notes on eigenvalues do not apply any more.

The algorithm is presented in [GoluVanLoan96] and some more details are worked out in [VarFEM], available at andreasstahel.github.io/Notes/VarFEM.pdf.

To determine the first m eigenvalues proceed as follows.

- Create an $n \times m$ matrix \mathbf{V}_{0} with the initial vectors $\vec{v}_{j, 0}$ as its columns.
- repeat until desired precision is reached
- solve the matrix equation $\mathbf{A} \cdot \mathbf{V}_{k}=\mathbf{B} \cdot \mathbf{V}_{k-1}$ or $\mathbf{V}_{k}=\mathbf{A}^{-1} \cdot \mathbf{B} \cdot \mathbf{V}_{k-1}$
- ortho-normalize the columns of \mathbf{V}_{k}, using a generalized Gram-Schmidt algorithm. The resulting columns of \mathbf{V}_{k} are orthonormal with respect to the scalar product $\langle\vec{x}, \mathbf{B} \vec{y}\rangle$.
- for $j=1,2 \ldots m$ compute $\beta_{j}=\langle\mathbf{V}(:, j), \mathbf{A} \cdot \mathbf{V}(:, j)\rangle$. Then β_{j} should be good approximations to the eigenvalues.

The error estimates are based on results in [Demm97]. For a normalized, approximate eigenvector \vec{v}_{i} and the corresponding approximate eigenvalue β_{i} compute the residual $\vec{r}=\mathbf{A} \vec{v}_{i}-\beta_{i} \mathbf{B} \vec{v}_{i}$. Then the estimates

$$
\begin{equation*}
\min _{\lambda_{j} \in \sigma(\mathbf{A})}\left|\beta_{i}-\lambda_{j}\right| \leq \sqrt{\left\langle\vec{r}, \mathbf{B}^{-1} \vec{r}\right\rangle} \quad \text { and } \quad\left|\beta_{i}-\lambda_{j}\right| \leq \frac{\left\langle\vec{r}, \mathbf{B}^{-1} \vec{r}\right\rangle}{\operatorname{gap}} \tag{60}
\end{equation*}
$$

are valid. The denominator gap measures the distance to the next eigenvalue.

$$
\text { gap }=\min \left\{\left|\beta_{i}-\lambda_{j}\right|: \lambda_{j} \in \sigma(\mathbf{A}), j \neq i\right\} .
$$

Without the exact values of the eigenvalues λ_{i} there is no way to compute the gap exactly. Thus use the approximate eigenvalues. Expect the error estimate to have its problems at multiple eigenvalues. For the largest computed eigenvalue one can not estimate gap reliably, since no information on the next eigenvalue is available.

7 The Algorithms for 1D FEM

In this section the algorithm for FEM algorithms for problems with one independent variable are presented, for sake of completeness. Only second order elements will be used. These notes are based on the presentation in the class room notes [Stah08, §6.9].
7.1 The 1D problems to be examined are shown.
7.2 The element stiffness matrix is constructed.
7.3 The boundary conditions are taken into account.
7.5 The tools to evaluate the solutions of 1D problems are introduced.
7.6 Dynamic problems of order 1 with respect to time are examined. Four different time steppers are introduced and compared. The algorithm for nonlinear problems is spelled out.
7.7 Dynamic problems of order 2 with respect to time are examined. An implicit and an explicit time stepper are presented.
7.8 An algorithm to solve nonlinear boundary value problems is presented.

7.1 The problems to be examined

The ordinary differential equation to be examined is of the form

$$
\begin{equation*}
-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=d(x) f(x) \tag{61}
\end{equation*}
$$

with some boundary conditions. Multiplying (61) by a smooth test function $\phi(x)$ and an integration by parts leads to

$$
\begin{align*}
0 & =\int_{x_{0}}^{x_{n}}\left(-\left(a(x) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)-d(x) f(x)\right) \phi(x) d x= \tag{62}\\
& =-\left.a(x) u^{\prime}(x) \phi(x)\right|_{x=x_{0}} ^{x_{n}}+\int_{x_{0}}^{x_{n}} a(x) u^{\prime}(x) \phi^{\prime}(x)+\left(b(x) u^{\prime}(x)+c(x) u(x)-d(x) f(x)\right) \phi(x) d x
\end{align*}
$$

The ODE (61) has to be supplemented with boundary conditions at the two endpoints $x=x_{0}$ and $x=x_{n}$.

$$
\begin{align*}
u\left(x_{i}\right) & =g_{D} & & \text { Dirichlet } \tag{63}\\
a\left(x_{i}\right) u^{\prime}\left(x_{i}\right) & =g_{N 1}+g_{N 2} u\left(x_{i}\right) & & \text { Neumann }
\end{align*}
$$

If the contribution $b(x) u^{\prime}(x)$ vanishes in the ODE (61), solving the ODE is closely related to minimizing the "energy" expression

$$
\begin{equation*}
F(u)=\int_{x_{0}}^{x_{n}} \frac{1}{2} a(x)\left(u^{\prime}(x)\right)^{2}+\frac{1}{2} c(x) u^{2}(x)-d(x) f(x) u(x) d x \tag{64}
\end{equation*}
$$

respecting the boundary conditions. For a Neumann condition at the right endpoint add the contribution

$$
\begin{equation*}
-g_{N 1} u\left(x_{n}\right)-\frac{1}{2} g_{N 2} u^{2}\left(x_{n}\right) \tag{65}
\end{equation*}
$$

to the above functional $F(u)$ and similar at the left endpoint add

$$
+g_{N 1} u\left(x_{0}\right)+\frac{1}{2} g_{N 2} u^{2}\left(x_{0}\right)
$$

Using FEM this equation will be discretized, leading to the global stiffness matrix \mathbf{A} and the global weight matrix \mathbf{M}, such that $\langle\mathbf{A} \vec{u}-\mathbf{M} \vec{f}, \vec{\phi}\rangle=0$ for all vectors $\vec{\phi}$. This then leads to the linear system $\mathbf{A} \vec{u}=\mathbf{M} \vec{f}$ to be solved for the vector \vec{u}.

The corresponding first order dynamic equation is given by

$$
\begin{equation*}
w(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t) \tag{66}
\end{equation*}
$$

with the initial condition $u(x, 0)=u_{0}(x)$ and the boundary conditions, either Dirichlet of Neumann.
The initial value problem of order 2 is

$$
\begin{equation*}
w_{2}(x) \frac{\partial^{2}}{\partial t^{2}} u(x, t)+2 w_{1}(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t) \tag{67}
\end{equation*}
$$

again with the corresponding boundary conditions.
A nonlinear boundary value problem is of the form

$$
\begin{equation*}
-\left(a\left(x, u(x), u^{\prime}(x)\right) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=d(x) f\left(x, u(x), u^{\prime}(x)\right) \tag{68}
\end{equation*}
$$

with the corresponding linear boundary conditions.

7.2 Interpolation, Gauss integration and the element stiffness matrices

In a first step the code will extend the provided interval $\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right]$ and add the midpoints $x_{i+0.5}=\frac{x_{i}+x_{i+1}}{2}$ to the interval, i.e. the new discretization will consist of $2 n+1$ points. The nodes are at $\vec{x}=\left[x_{0}, x_{0.5}, x_{1}, x_{1.5}, \ldots, x_{n-1}, x_{n-0.5}, x_{n}\right] \in$ $\mathbb{R}^{2 n+1}$.

To generate a finite element formulation first examine an subinterval $x_{i} \leq x \leq x_{i+1}$. The nodes for the FEM algorithm are the two endpoints x_{i}, x_{i+1} and the midpoint $x_{i+0.5}=\frac{x_{i}+x_{i+1}}{2}$. For given coefficient functions $a(x), b(x), c(x)$ and $d(x)$ and the values of the functions $u(x), f(x)$ and $\phi(x)$ at the three nodes. Then use a quadratic interpolation to construct the functions $u(x), f(x)$ and $\phi(x)$ on the interval. Four integrals have to be examined.

$$
\begin{aligned}
I_{f} & =\int_{x_{i}}^{x_{i+1}} d(x) f(x) \phi(x) d r \quad, \quad I_{0} \\
I_{1} & =\int_{x_{i}}^{x_{i+1}} b(x) u^{\prime}(x) \phi(x) d r \quad \text { and } \quad I_{2}
\end{aligned}=\int_{x_{i}}^{x_{i+1}} c(x) u(x) \phi(x) d r, u^{\prime}(x) \phi^{\prime}(x) d r
$$

To compute these integrals use the very efficient 3-point Gauss integration on a standard interval $\left[\frac{-h}{2}, \frac{+h}{2}\right]$ of length h.

- On the interval $-\frac{h}{2} \leq x \leq+\frac{h}{2}$ the 3-point Gauss integration formula is given by

$$
\begin{equation*}
\int_{-h / 2}^{h / 2} u(x) d x \approx \frac{h}{18}\left(5 u\left(-\sqrt{\frac{3}{5}} \frac{h}{2}\right)+8 u(0)+5 u\left(+\sqrt{\frac{3}{5}} \frac{h}{2}\right)\right) . \tag{69}
\end{equation*}
$$

- The three values of a function $u(x)$ at $u(-h / 2)=u_{-}, u(0)=u_{0}$ and $u(h / 2)=u_{+}$determine a quadratic interpolating polynomial ${ }^{26}$

$$
u(x)=u_{0}+\frac{u_{+}-u_{-}}{h} x+\frac{u_{+}-2 u_{0}+u_{-}}{h^{2}} 2 x^{2} .
$$

Use $x=0$ and $x= \pm \sqrt{\frac{3}{5}} \frac{h}{2}$ to determine the values of $u(x)$ at the Gauss points by ${ }^{27}$

$$
\begin{aligned}
\left(\begin{array}{c}
u\left(-\sqrt{\frac{3}{5}} \frac{h}{2}\right) \\
u(0) \\
u\left(+\sqrt{\frac{3}{5}} \frac{h}{2}\right)
\end{array}\right) & =\left[\begin{array}{ccc}
\frac{3}{10}+\frac{\sqrt{\frac{3}{5}}}{2} & \frac{4}{10} & \frac{3}{10}-\frac{\sqrt{\frac{3}{5}}}{2} \\
0 & 1 & 0 \\
\frac{3}{10}-\frac{\sqrt{\frac{3}{5}}}{2} & \frac{4}{10} & \frac{3}{10}+\frac{\sqrt{\frac{3}{5}}}{2}
\end{array}\right] \cdot\left(\begin{array}{c}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right) \\
& =\frac{1}{10}\left[\begin{array}{ccc}
3+\sqrt{15} & 4 & 3-\sqrt{15} \\
0 & 10 & 0 \\
3-\sqrt{15} & 4 & 3+\sqrt{15}
\end{array}\right] \cdot\left(\begin{array}{l}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right)=\mathbf{G}_{0} \cdot\left(\begin{array}{l}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right) .
\end{aligned}
$$

Use this Gaussian interpolation matrix to compute the values of the function at the Gauss integration points, using the values at the nodes.

- The matrix \mathbf{G}_{0} is basis to construct a matrix to interpolate from the nodes of a FEM grid to the Gauss points. As example consider a grid with three elements of order 2 and thus $3 \cdot 2+1=7$ nodes and there are $3 \cdot 3=9$ Gauss points. Each block in the matrix is given by \mathbf{G}_{0}. This leads to the 9×7 matrix which allows to determine the values of the function at the Gauss points by a matrix multiplication.

$$
\left(\begin{array}{l}
u_{1-} \tag{70}\\
u_{10} \\
u_{1+} \\
u_{2-} \\
u_{20} \\
u_{2+} \\
u_{3-} \\
u_{30} \\
u_{3+}
\end{array}\right)=\left[\begin{array}{cccccc}
\frac{3+\sqrt{15}}{10} & \frac{4}{10} & \frac{3-\sqrt{15}}{10} \\
0 & 1 & 0 & & & \\
\frac{3-\sqrt{15}}{10} & \frac{4}{10} & \frac{3+\sqrt{15}}{10} & & & \\
& & \frac{3+\sqrt{15}}{10} & \frac{4}{10} & \frac{3-\sqrt{15}}{10} & \\
& 0 & 1 & 0 & \\
& & \frac{3-\sqrt{15}}{10} & \frac{4}{10} & \frac{3+\sqrt{15}}{10} & \\
\\
& & & & \frac{3+\sqrt{15}}{10} & \frac{4}{10} \\
& & & \frac{3-\sqrt{15}}{10} \\
& & & \frac{3-\sqrt{15}}{10} & \frac{4}{10} & \frac{3+\sqrt{15}}{10}
\end{array}\right]\left(\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6}
\end{array}\right)
$$

Observe that this matrix does not depend on the distances h_{i} between the nodes.
${ }^{26} \mathrm{To}$ verify the formula use $u(0)=u_{0}$ and for $x= \pm \frac{h}{2}$

$$
u\left(\pm \frac{h}{2}\right)=u_{0} \pm \frac{u_{+}-u_{-}}{h} \frac{h}{2}+\frac{u_{+}-2 u_{0}+u_{-}}{h^{2}} \frac{2 h^{2}}{4}=u_{0}(1-1)+u_{+}\left(\pm \frac{1}{2}+\frac{1}{2}\right)-u_{-}\left(\pm \frac{1}{2}-\frac{1}{2}\right)
$$

${ }^{27}$ E.g. to obtain the last row in \mathbf{G}_{0} evaluate $u\left(+\sqrt{\frac{3}{5}} \frac{h}{2}\right)$.

$$
\begin{aligned}
u\left(+\sqrt{\frac{3}{5}} \frac{h}{2}\right) & =u_{0}+\frac{u_{+}-u_{-}}{h} \sqrt{\frac{3}{5}} \frac{h}{2}+\frac{u_{+}-2 u_{0}+u_{-}}{h^{2}} 2 \frac{3}{5} \frac{h^{2}}{2^{2}} \\
& =\left(-\sqrt{\frac{3}{5}} \frac{1}{2}+\frac{3}{10}\right) u_{-}+\left(1-\frac{3}{5}\right) u_{0}+\left(+\sqrt{\frac{3}{5}} \frac{1}{2}+\frac{3}{10}\right) u_{+} \\
& =\left(\frac{3}{10}-\frac{\sqrt{\frac{3}{5}}}{2}\right) u_{-}+\frac{4}{10} u_{0}+\left(\frac{3}{10}+\frac{\sqrt{\frac{3}{5}}}{2}\right) u_{+}
\end{aligned}
$$

- The above can be repeated to obtain the values of the derivative

$$
u^{\prime}(x)=\frac{u_{+}-u_{-}}{h}+\frac{u_{+}-2 u_{0}+u_{-}}{h^{2}} 4 x
$$

at the Gauss points.

$$
\left(\begin{array}{c}
u^{\prime}\left(-\sqrt{\frac{3}{5}} \frac{h}{2}\right) \\
u^{\prime}(0) \\
u^{\prime}\left(+\sqrt{\frac{3}{5}} \frac{h}{2}\right)
\end{array}\right)=\frac{1}{h}\left[\begin{array}{ccc}
-1-2 \sqrt{\frac{3}{5}} & +4 \sqrt{\frac{3}{5}} & +1-2 \sqrt{\frac{3}{5}} \\
-1 & 0 & +1 \\
-1+2 \sqrt{\frac{3}{5}} & -4 \sqrt{\frac{3}{5}} & +1+2 \sqrt{\frac{3}{5}}
\end{array}\right] \cdot\left(\begin{array}{c}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right)=\frac{1}{h} \mathbf{G}_{1} \cdot\left(\begin{array}{c}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right) .
$$

- Use the same idea as above construct a matrix to evaluate the derivatives at the Gauss points by a matrix multiplication. Each block in this matrix is given by $\frac{1}{h_{i}} \mathbf{G}_{1}$.
- Define a weight matrix \mathbf{W} by

$$
\mathbf{W}=\operatorname{diag}\left(\left[\frac{5}{18}, \frac{8}{18}, \frac{5}{18}\right]\right)=\left[\begin{array}{ccc}
\frac{5}{18} & 0 & 0 \\
0 & \frac{8}{18} & 0 \\
0 & 0 & \frac{5}{18}
\end{array}\right]
$$

and then rewrite the Gauss integration (69) in the form

$$
\int_{-h / 2}^{+h / 2} u(x) d x \approx \frac{h}{18}\left(5 u\left(-\sqrt{\frac{3}{5}} \frac{h}{2}\right)+8 u(0)+5 u\left(+\sqrt{\frac{3}{5}} \frac{h}{2}\right)\right)=h \sum_{i=1}^{3}\left(\mathbf{W} \mathbf{G}_{\mathbf{0}} \vec{u}\right)_{i},
$$

where the vector \vec{u} contains the values of the function at $\pm \frac{h}{2}$ and 0 .

- To evaluate the function $a(x)$ at the Gauss points use the matrix notation

$$
\mathbf{a}=\left[\begin{array}{ccc}
a\left(-\sqrt{\frac{3}{5}} \frac{h}{2}\right) & 0 & 0 \\
0 & a(0) & 0 \\
0 & 0 & a\left(+\sqrt{\frac{3}{5}} \frac{h}{2}\right)
\end{array}\right]
$$

and similarly for the functions $b(x), c(x)$ and $d(x)$, leading to the diagonal matrices \mathbf{b}, \mathbf{c} and \mathbf{d}.
The above notation leads to the required integrals. With $\Delta x_{i}=x_{i+1}-x_{i}$ obtain

$$
\begin{aligned}
I_{f} & =\int_{x_{i}}^{x_{i+1}}-d(x) f(x) \phi(x) d x \approx \Delta x_{i}\left\langle\mathbf{W} \mathbf{d} \mathbf{G}_{0} \vec{f}, \mathbf{G}_{0} \vec{\phi}\right\rangle=-\Delta x_{i}\left\langle\mathbf{G}_{0}^{T} \mathbf{W} \mathbf{d} \mathbf{G}_{0} \vec{f}, \vec{\phi}\right\rangle \\
I_{0} & =\int_{x_{i}}^{x_{i+1}} c(x) u(x) \phi(x) d x \approx \Delta x_{i}\left\langle\mathbf{W} \mathbf{c} \mathbf{G}_{0} \vec{u}, \mathbf{G}_{0} \vec{\phi}\right\rangle=\Delta x_{i}\left\langle\mathbf{G}_{0}^{T} \mathbf{W} \mathbf{c} \mathbf{G}_{0} \vec{u}, \vec{\phi}\right\rangle \\
I_{1} & =\int_{x_{i}}^{x_{i+1}} b(x) u^{\prime}(x) \phi(x) d x \approx \frac{\Delta x_{i}}{\Delta x_{i}}\left\langle\mathbf{W} \mathbf{b} \mathbf{G}_{1} \vec{u}, \mathbf{G}_{0} \vec{\phi}\right\rangle=\left\langle\mathbf{G}_{0}^{T} \mathbf{W} \mathbf{b} \mathbf{G}_{1} \vec{u}, \vec{\phi}\right\rangle \\
I_{2} & =\int_{x_{i}}^{x_{i+1}} a(x) u^{\prime}(x) \phi^{\prime}(x) d r \approx \frac{\Delta x_{i}}{\left(\Delta x_{i}\right)^{2}}\left\langle\mathbf{W} \mathbf{a} \mathbf{G}_{1} \vec{u}, \mathbf{G}_{1} \vec{\phi}\right\rangle=\frac{1}{\Delta x_{i}}\left\langle\mathbf{G}_{1}^{T} \mathbf{W} \mathbf{a} \mathbf{G}_{1} \vec{u}, \vec{\phi}\right\rangle
\end{aligned}
$$

USing a summation apply the above integrals to the interval $I=\left[x_{0}, x_{n}\right]$, discretized by $x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}$. For the second order elements the midpoints $x_{i+0.5}=\frac{x_{i}+x_{i+1}}{2}$ of the intervals will be used too, leading to the nodes at $x_{0}<x_{0.5}<x_{1}<x_{1.5}<x_{2}<\ldots<x_{n-1}<x_{n-0.5}<x_{n}$, i.e. $\vec{x} \in \mathbb{R}^{2 n+1}$. Examine the discrete version of the weak solution, thus integrals (or sums) of the type

$$
\begin{aligned}
I & =\int_{x_{l}}^{x_{r}} a(x) u^{\prime}(x) \phi^{\prime}(x)+b(x) u^{\prime}(x) \phi(x)+c(x) u(x) \phi(x)-d(x) f(x) \phi(x) d x \\
& \left.=\sum_{i=1}^{n} \int_{x_{i}}^{x_{i+1}} a(x) u^{\prime}(x) \phi^{\prime}(x)+b(x) u^{\prime}(x) \phi(x)+c(x) u(x) \phi(x)-d(x) f\right)(x) \phi(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \approx \sum_{i=1}^{n}\left(\frac{1}{\Delta x_{i}}\left\langle\mathbf{G}_{1}^{T} \mathbf{W} \mathbf{a}_{i} \mathbf{G}_{1} \vec{u}_{i}, \vec{\phi}_{i}\right\rangle+\left\langle\mathbf{G}_{0}^{T} \mathbf{W} \mathbf{b}_{i} \mathbf{G}_{1} \vec{u}_{i}, \vec{\phi}_{i}\right\rangle+\right. \\
& \left.\quad+\Delta x_{i}\left\langle\mathbf{G}_{0}^{T} \mathbf{W} \mathbf{c}_{i} \mathbf{G}_{0} \vec{u}_{i}, \vec{\phi}_{i}\right\rangle-\Delta x_{i}\left\langle\mathbf{G}_{0}^{T} \mathbf{W} \mathbf{d}_{i} \mathbf{G}_{0} \vec{f}_{i}, \vec{\phi}_{i}\right\rangle\right) \\
& =\langle\mathbf{A} \vec{u}-\mathbf{M} \vec{f}, \vec{\phi}\rangle \text { for all vectors } \vec{\phi} \in \mathbb{R}^{2 n+1} .
\end{aligned}
$$

The stiffness matrix \mathbf{A} and the weight matrix \mathbf{M} are both of size $(2 n+1) \times(2 n+1)$, but the boundary conditions are not taken into account yet. This has to be done with some care, since the differential equation (61) has a unique solution only if boundary conditions are taken into account.

7.3 Taking boundary conditions into account

Ignoring the boundary conditions the linear system to be solved for $\vec{u} \in \mathbb{R}^{2 n+1}$ is

$$
\begin{equation*}
\mathbf{A} \vec{u}=\mathbf{M} \vec{f} \tag{71}
\end{equation*}
$$

where $\vec{f} \in \mathbb{R}^{2 n+1}$ contains the vaues of $f(x)$ at the nodes $\vec{x} \in \mathbb{R}^{2 n+1}$. The contribution in (62) by boundary terms is

$$
\left.a(x) u^{\prime}(x) \phi(r)\right|_{x=x_{0}} ^{x_{n}}=a\left(x_{n}\right) u^{\prime}\left(x_{n}\right) \phi\left(x_{n}\right)-a\left(x_{0}\right) u^{\prime}\left(x_{0}\right) \phi\left(x_{0}\right)
$$

This leads to different algorithms to take Dirichlet or Neumann conditions into account. There are four possible combinations of Dirichlet (D) and Neumann (N) boundary conditions: DD, DN, ND and NN.

DD Dirichlet conditions at both endpoints.
The first component of the vector \vec{u} equals $u\left(x_{0}\right)=g_{D 1}$ and the for the last component use $u\left(x_{n}\right)=g_{D 2}$. Equation (71) reads as

$$
\mathbf{A}\left(\begin{array}{c}
g_{D 1} \\
u_{0.5} \\
u_{1} \\
\vdots \\
u_{2 n-1} \\
u_{2 n-0.5} \\
g_{D 2}
\end{array}\right)=\mathbf{M}\left(\begin{array}{c}
f_{0} \\
f_{0.5} \\
f_{1} \\
\vdots \\
f_{n-1} \\
f_{n-0.5} \\
f_{n}
\end{array}\right)
$$

Remove the first and last row in the matrix A. Split off the first column \vec{a}_{f} and the last column \vec{a}_{l} form the matrix $\left[\vec{a}_{f}, \mathbf{A}_{r}, \vec{a}_{l}\right]$ and in the matrix $\mathbf{M} \in \mathbb{R}^{(2 n+1) \times(2 n+1)}$ remove the first and last row, leading to $\mathbf{M}_{r} \in \mathbb{R}^{(2 n-1) \times(2 n+1)}$. Then examine

$$
\mathbf{A} \vec{u}=\mathbf{M} \vec{f} \quad \longrightarrow \quad\left[\begin{array}{lll}
\vec{a}_{f} & \mathbf{A}_{r} & \vec{a}_{l}
\end{array}\right]\left(\begin{array}{c}
g_{D 1} \\
\vec{u}_{r} \\
g_{D 2}
\end{array}\right)=\mathbf{M}_{r} \vec{f} \quad \longrightarrow \quad \mathbf{A}_{r} \vec{u}_{r}=\mathbf{M}_{r} \vec{f}-\vec{a}_{f} g_{D 1}-\vec{a}_{l} g_{D 2}
$$

where $\mathbf{A}_{r} \in \mathbb{R}^{(2 n-1) \times(2 n-1)}, \vec{u}_{r} \in \mathbb{R}^{2 n-1}, \mathbf{M}_{r} \in \mathbb{R}^{(2 n-1) \times(2 n+1)}$ and $\vec{f} \in \mathbb{R}^{2 n+1}$. The solution is then given by $\left[g_{D 1}, \vec{u}_{r}, g_{D 2}\right] \in \mathbb{R}^{2 n+1}$.

DN Dirichlet at x_{0} and Neumann at x_{n}
The Dirichlet condition $u\left(x_{0}\right)=g_{D 1}$ leads to the modifications of the first rows and columns of \mathbf{A} and \mathbf{M}, just as above. For the boundary condition $a\left(x_{n}\right) u^{\prime}\left(x_{n}\right)=g_{N 1}+g_{N 2} u\left(x_{n}\right)$ the correct type of contributions will have to be
taken into account. The additional contributions in (65) to the functional $F(u)$ in (64) lead to

$$
\mathbf{A}\left(\begin{array}{c}
g_{D 1} \\
u_{0.5} \\
u_{1} \\
\vdots \\
u_{n-1} \\
u_{n-0.5} \\
u_{n}
\end{array}\right)-\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
g_{N 2} u_{n}
\end{array}\right)=\mathbf{M}\left(\begin{array}{c}
f_{0} \\
f_{0.5} \\
f_{1} \\
\vdots \\
f_{n-1} \\
f_{n-0.5} \\
f_{n}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
g_{N 1}
\end{array}\right) .
$$

Thus the matrix A and the RHS have to be modified accordingly. From the last entry on the diagonal of the matrix A subtract $g_{N 2}$.

$$
\left[\begin{array}{ll}
\vec{a}_{f} & \mathbf{A}_{r}
\end{array}\right]\binom{g_{D 1}}{\vec{u}_{r}}=\mathbf{M}_{r} \vec{f}+\vec{g}_{N 1} \quad \longrightarrow \quad \mathbf{A}_{r} \vec{u}_{r}=\mathbf{M}_{r} \vec{f}-\vec{a}_{f} g_{D 1}+\vec{g}_{N 1}
$$

where $\mathbf{A}_{r} \in \mathbb{R}^{2 n \times 2 n}, \vec{u}_{r} \in \mathbb{R}^{2 n}, \mathbf{M}_{r} \in \mathbb{R}^{2 n \times(2 n+1)}$ and $\vec{f} \in \mathbb{R}^{2 n+1}$. The solution is then given by $\left[g_{D 1}, \vec{u}_{r}\right] \in$ $\mathbb{R}^{2 n+1}$.

ND Neumann at x_{0} and Dirichlet at x_{n}
The Dirichlet condition $u\left(x_{n}\right)=g_{D 2}$ leads to the modifications of the last rows and columns, just as above. For the boundary condition $a\left(x_{0}\right) u^{\prime}\left(x_{0}\right)=g_{N 1}+g_{N 2} u\left(x_{0}\right)$ the correct type of contributions will have to be taken into account. The additional contributions in (65) to the functional $F(u)$ leads to

$$
\mathbf{A}\left(\begin{array}{c}
u_{0} \\
u_{0.5} \\
u_{1} \\
\vdots \\
u_{n-0.5} \\
g_{D 2}
\end{array}\right)+\left(\begin{array}{c}
g_{N 2} u_{0} \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)=\mathbf{M}\left(\begin{array}{c}
f_{0} \\
f_{0.5} \\
f_{1} \\
\vdots \\
f_{n-0.5} \\
f_{n}
\end{array}\right)-\left(\begin{array}{c}
g_{N 1} \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right) .
$$

Observe the different signs of the Neumann contribution. Thus the matrix A and the RHS have to be modified accordingly. To the first entry on the diagonal of the matrix \mathbf{A} add $g_{N 2}$.

$$
\left[\begin{array}{cc}
\mathbf{A}_{r} & \vec{a}_{l}
\end{array}\right]\binom{\vec{u}_{r}}{g_{D 2}}=\mathbf{M}_{r} \vec{f}+\vec{g}_{N 1} \quad \longrightarrow \quad \mathbf{A}_{r} \vec{u}_{r}=\mathbf{M}_{r} \vec{f}-\vec{a}_{l} g_{D 1}-\vec{g}_{N 1}
$$

where $\mathbf{A}_{r} \in \mathbb{R}^{2 n \times 2 n}, \vec{u}_{r} \in \mathbb{R}^{2 n}, \mathbf{M}_{r} \in \mathbb{R}^{2 n \times(2 n+1)}$ and $\vec{f} \in \mathbb{R}^{2 n+1}$. The solution is then given by $\left[\vec{u}_{r}, g_{D 2}\right] \in$ $\mathbb{R}^{2 n+1}$.

NN Neumann conditions at both endpoints.
The modifications are given by

$$
\mathbf{A}\left(\begin{array}{c}
u_{0} \\
u_{0.5} \\
u_{1} \\
\vdots \\
u_{n-0.5} \\
u_{n}
\end{array}\right)+\left(\begin{array}{c}
+g_{N 2 _l e f t} u_{0} \\
0 \\
0 \\
\vdots \\
0 \\
-g_{N 2 _ \text {right }} u_{n}
\end{array}\right)=\mathbf{M}\left(\begin{array}{c}
f_{0} \\
f_{0.5} \\
f_{1} \\
\vdots \\
f_{n-0.5} \\
f_{n}
\end{array}\right)+\left(\begin{array}{c}
-g_{N 1 _l e f t} \\
0 \\
0 \\
\vdots \\
0 \\
+g_{N 1 _r i g h t}
\end{array}\right) .
$$

The size of the matrices \mathbf{A} and \mathbf{M} remains unchanged. To the first entry on the diagonal of the matrix $\mathbf{g A}$ add $g_{N 2 _l e f t}$ and from the last entry subtract $g_{N 2 _r i g h t}$.

$$
\mathbf{A}_{r} \vec{u}=\mathbf{M} \vec{f}+\vec{g}_{N 1}
$$

where $\mathbf{A}_{r} \in \mathbb{R}^{(2 n+1) \times(2 n+1)}, \vec{u} \in \mathbb{R}^{2 n+1}, \mathbf{M} \in \mathbb{R}^{(2 n+1) \times(2 n+1)}$ and $\vec{f} \in \mathbb{R}^{2 n+1}$.

7.4 Solving the BVP with a system of linear equations

Using the above algorithms leads to the linear system

$$
\mathbf{A}_{r} \vec{u}_{r}-\mathbf{M}_{r} \vec{f}=\overrightarrow{0} \quad \text { or } \quad \vec{u}=\mathbf{A}_{r}^{-1} \mathbf{M}_{r} \vec{f}=\mathbf{A}_{r} \backslash \mathbf{M}_{r} \vec{f}
$$

The resulting matrix \mathbf{A}_{r} is symmetric if $b(x)$ vanishes identically and it has a band structure with semi-bandwidth 3, i.e. in each row there are up to 5 nonzero entries around the diagonal.

7.5 Evaluation of the solution between nodes and evaluation of derivatives

The above algorithms lead to the values of the solution at the nodes. Between nodes the algorithm is based on piece-wise quadratic interpolation. Thus it is advisable to use a quadratic interpolation if the values at more points are required. The Octave function pwquadinterp () does just that, and it can be used to evaluate first and second derivatives too.

To evaluate the derivatives at the nodes use the quadratic interpolation. For a quadratic function with $u_{-}=u\left(-\frac{h}{2}\right)$, $u(0)=u_{0}$ and $u_{+}=u\left(+\frac{h}{2}\right)$ the derivative

$$
u^{\prime}(x)=\frac{u_{+}-u_{-}}{h}+\frac{u_{+}-2 u_{0}+u_{-}}{h^{2}} 4 x
$$

leads to values at the end- and mid-points.

$$
\begin{aligned}
u^{\prime}\left(-\frac{h}{2}\right) & =\frac{u_{+}-u_{-}}{h}-\frac{u_{+}-4 u_{0}+u_{-}}{h^{2}} 2 h=\frac{1}{h}\left(-3 u_{-}+2 u_{0}-1 u_{+}\right) \\
u^{\prime}(0) & =\frac{1}{h}\left(-1 u_{-}+0 u_{0}+1 u_{+}\right) \\
u^{\prime}\left(+\frac{h}{2}\right) & =\frac{u_{+}-u_{-}}{h}+\frac{u_{+}-4 u_{0}+u_{-}}{h^{2}} 2 h=\frac{1}{h}\left(+1 u_{-}-2 u_{0}+3 u_{+}\right)
\end{aligned}
$$

With a matrix notation write this in the form

$$
\left(\begin{array}{c}
u^{\prime}\left(-\frac{h}{2}\right) \\
u^{\prime}(0) \\
u^{\prime}\left(+\frac{h}{2}\right)
\end{array}\right)=\frac{1}{h}\left[\begin{array}{ccc}
-3 & +4 & -1 \\
-1 & 0 & +1 \\
+1 & -4 & +3
\end{array}\right]\left(\begin{array}{c}
u_{-} \\
u_{0} \\
u_{+}
\end{array}\right)
$$

The second derivative is constant on each subinterval and given by

$$
u^{\prime \prime}(x)=4 \frac{u_{-}-2 u_{0}+u_{+}}{h^{2}} .
$$

This is used in the code FEM1DEvaluateDu () to determine the derivatives at the nodes, generated by BVP1D (). At the endpoints of the subintervals the average of derivatives in the two neighboring intervals is used.

FEM1DEvaluateDu.m

```
function [du,ddu] = FEM1DEvaluateDu(x,u)
%% du = FEM1DEvaluateDu(x,u)
%% evaluate first and second derivatives at the nodes x
%% requires the interval x and u to be generated by BVP1D()
    n = (length(x)-1)/2; %% number of subintervals
    du = zeros(size(x)); ddu = du;
    M = 0.5*[-3,4,-1;-2,0,2;1,-4,3]; %% matrix to determine first derivatives
    h = diff(x); h = h(1:2:end)*2;
    for jj = 1:n
        range = [2*jj-1:2*jj+1];
        du(range) += M*u(range)/h(jj);
        ddu(range) += 2*[1;2;1]*[1 -2 1]*u(range)/h(jj)^2;
    endfor
    du([1;end]) *= 2; ddu([1;end]) *= 2;
endfunction
```


7.6 The first order dynamic problem

The approach to solve the dynamic problem (66)

$$
w(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t)
$$

is similar to the 2D approach presented in Section 6.8.1. The first step is to solve the static problem

$$
-\left(a(x) u_{B}^{\prime}(x)\right)^{\prime}+b(x) u_{B}^{\prime}(x)+c(x) u_{B}(x)=0 \quad \text { with } \quad u_{B}\left(x_{i}\right)=g_{D} \quad \text { or } \quad a\left(x_{i}\right) u_{B}^{\prime}\left(x_{i}\right)=g_{N 1}+g_{N 2} u_{B}\left(x_{i}\right)
$$

Then the new function $v(x, t)=u(x, t)-u_{B}(x)$ is a solution of an initial boundary value problem with no constant boundary contributions, i.e. at the boundary points x_{0} and x_{n}

$$
v\left(x_{i}, t\right)=0 \quad \text { or } \quad a\left(x_{i}\right) v^{\prime}\left(x_{i}, t\right)=0+g_{N 2}\left(x_{i}\right) v\left(x_{i}, t\right)
$$

and the initial condition $v(x, 0)=u_{0}(x)-u_{B}(x)$. This problem is then discretized with respect to x, leading to a system of ordinary differential equations, similar to equation (57)

$$
\begin{equation*}
\mathbf{W} \frac{d}{d t} \vec{v}(t)+\mathbf{A} \vec{v}(t)=\mathbf{M} \vec{f}(t) \quad \text { with } \quad \vec{v}(0)=\vec{v}_{0} \tag{72}
\end{equation*}
$$

There are many algorithms available to perform a time step from $\vec{v}(t)$ to $\vec{v}(t+\Delta t)$. Table 16 shows a few key properties of the solvers used in IBVP1D () and IBVP2D ().

- order of consistency: order of consistency of the time stepping algorithm.
- A-stability: a solver is called A-stable if for ODEs of the type $\frac{d}{d t} \vec{u}(t)=\mathbf{A} \vec{u}(t)$ with negative eigenvalues the approximate solutions remain bounded, independent on the stepsize Δt.
- L-stability: a solver is called L-stable if the above approximate solutions converge to zero rapidly for large eigenvalues $\lambda<0 .{ }^{28}$
- \# of systems to solve: the number of linear systems that have to be solved for one time step.

algorithm	order of consistency	A-stability	L-stability	\# of systems to solve
explicit	1	conditional	no	1
implicit	1	unconditional	yes	1
Crank-Nicolson	2	unconditional	no	1
Runge-Kutta, L-stable	2	unconditional	yes	2

Table 16: Properties of the ODE solvers used in IBVP1D ()

FEMoct ave uses a very simple implementation of the time steppers, i.e. no stepsize control or adaptation is performed. The stepsize Δt is constant on the time interval to be examined. One can specify the number of time slices to be returned as result and how many steps to take between the returned times. For the explicit time stepper a warning is issued if the algorithm is very likely to be unstable, i.e. when $\Delta t>\frac{2}{\lambda_{\max }}$. This authors advise is to not use the explicit time stepper.

[^19]If $|g(z)|<1$ for $\operatorname{Re}(z)>0$ then the algorithm is A-stable. If $\lim _{z \rightarrow+\infty}|g(z)|=0$ then the algorithm is L -stable.

7.6.1 An explicit time step

To solve (72) with an explicit solver with time step Δt use

$$
\begin{aligned}
\mathbf{W} \frac{\vec{v}(t+\Delta t)-\vec{v}(t)}{\Delta t}+\mathbf{A} \vec{v}(t) & =\mathbf{M} \vec{f}(t) \\
\mathbf{W} \vec{v}(t+\Delta t) & =\mathbf{W} \vec{v}(t)+\Delta t(-\mathbf{A} \vec{v}(t)+\mathbf{M} \vec{f}(t)) \\
\vec{v}(t+\Delta t) & =\vec{v}(t)+\Delta t \mathbf{W}^{-1}(-\mathbf{A} \vec{v}(t)+\mathbf{M} \vec{f}(t))
\end{aligned}
$$

7.6.2 An implicit time step

To solve (72) with an implicit solver with time step Δt use

$$
\begin{aligned}
\mathbf{W} \frac{\vec{v}(t+\Delta t)-\vec{v}(t)}{\Delta t}+\mathbf{A} \vec{v}(t+\Delta t) & =\mathbf{M} \vec{f}(t+\Delta t) \\
(\mathbf{W}+\Delta t \mathbf{A}) \vec{v}(t+\Delta t) & =\mathbf{W} \vec{v}(t)+\Delta t \mathbf{M} \vec{f}(t+\Delta t) \\
\vec{v}(t+\Delta t) & =(\mathbf{W}+\Delta t \mathbf{A})^{-1}(\mathbf{W} \vec{v}(t)+\Delta t \mathbf{M} \vec{f}(t+\Delta t))
\end{aligned}
$$

7.6.3 A Crank-Nicolson time step

In Section 6.8.1 (page 165) the algorithm of Crank-Nicolson is presented as time stepper. With above notation a time step is given by

$$
\begin{aligned}
\mathbf{W} \frac{\vec{v}(t+\Delta t)-\vec{v}(t)}{\Delta t}+\mathbf{A} \frac{\vec{v}(t+\Delta t)+\vec{v}(t)}{2} & =\mathbf{M} \vec{f}(t+\Delta t / 2) \\
\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}\right) \vec{v}(t+\Delta t) & =+\left(\mathbf{W}-\frac{\Delta t}{2} \mathbf{A}\right) \vec{v}(t)+\Delta t \mathbf{M} \vec{f}(t+\Delta t / 2)
\end{aligned}
$$

This is the default time stepper used in FEMoctave.

7.6.4 An L-stable Runge-Kutta solver, DIRK

This is a diagonally implicit Runge-Kutta method or a DIRK method. Find more details in [Butc03, §361]. The Butcher table of the algorithm is given by

$$
\begin{array}{c|cc}
\theta & \theta & 0 \\
1 & 1-\theta & \theta \\
\hline y_{n+1} & 1-\theta & \theta
\end{array} \quad \text { with } \theta=1-\frac{1}{\sqrt{2}}, \text {,.e. } \quad \begin{array}{cccc}
1-\frac{1}{\sqrt{2}} & 1-\frac{1}{\sqrt{2}} & 0 \\
1 & \frac{1}{\sqrt{2}} & 1-\frac{1}{\sqrt{2}} \\
\hline y_{n+1} & \frac{1}{\sqrt{2}} & 1-\frac{1}{\sqrt{2}}
\end{array} .
$$

To apply this algorithm to the ODE $\mathbf{W} \frac{d}{d t} \vec{u}(t)=-\mathbf{A} \vec{u}(t)+\mathbf{M} \vec{f}(t)$ use the above Butcher table.

$$
\begin{aligned}
\mathbf{W} \vec{k}_{1} & =-\mathbf{A}\left(\vec{u}_{n}+\theta \Delta t \vec{k}_{1}\right)+\mathbf{M} \vec{f}\left(t_{n}+\theta \Delta t\right) \\
\mathbf{W} \vec{k}_{2} & =-\mathbf{A}\left(\vec{u}_{n}+\Delta t\left((1-\theta) \vec{k}_{1}+\theta \vec{k}_{2}\right)\right)+\mathbf{M} \vec{f}\left(t_{n}+1 \Delta t\right) \\
\vec{u}_{n+1} & =\vec{u}_{n}+\Delta t\left((1-\theta) \vec{k}_{1}+\theta \vec{k}_{2}\right)
\end{aligned}
$$

With $\frac{1}{2}-\theta=\theta(1-\theta)=\frac{\theta}{\sqrt{2}}$ and tedious algebra (spelled out in [Stah08, §4.5.8]) this leads to two linear systems to be solved, with the same matrix $\mathbf{W}+\theta \Delta t \mathbf{A}$. Thus only one LU factorization is necessary for the time stepper.

$$
\begin{align*}
(\mathbf{W}+\theta \Delta t \mathbf{A}) \vec{k}_{1}= & -\mathbf{A} \vec{u}_{n}+\mathbf{M} \vec{f}\left(t_{n}+\theta \Delta t\right) \tag{73}\\
(\mathbf{W}+\theta \Delta t \mathbf{A}) \vec{u}_{n+1}= & \left(\mathbf{W}-\Delta t \frac{1}{\sqrt{2}} \mathbf{A}\right) \vec{u}_{n}-(\Delta t)^{2}\left(\frac{1}{2}-\theta\right) \mathbf{A} \vec{k}_{1}+ \tag{74}\\
& +\Delta t \mathbf{M}\left((1-\theta) \vec{f}\left(t_{n}+\theta \Delta t\right)+\theta \vec{f}\left(t_{n}+\Delta t\right)\right)
\end{align*}
$$

7.6.5 A solver for semilinear dynamic problems

A semilinear initial boundary value problem with one space dimension is given by

$$
\begin{equation*}
w(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)=d(x) f(x, t, u(x, t)) \tag{75}
\end{equation*}
$$

For the function f on the right hand side the partial derivative with respect to u has to be known and a linear approximation is used during the time steppers ${ }^{29}$. Use the linear approximation

$$
f_{u}(x, t, u)=\frac{\partial}{\partial u} f_{u}(x, t, u) \quad \text { and } \quad f(x, t, u+\phi) \approx f(x, t, u)+f_{u}(x, t, u) \phi
$$

The first step is to solve

$$
w(x) \frac{\partial}{\partial t} u_{B}(x, t)-\left(a(x) u_{B}^{\prime}(x, t)\right)^{\prime}+b(x) u_{B}^{\prime}(x, t)+c(x) u_{B}(x, t)=0
$$

with the possibly nonhomogenous boundary conditions. Then the function $v(x, t)=u(x, t)-u_{B}(x)$ satisfies zero boundary conditions and is a solution of

$$
\begin{equation*}
w(x) \frac{\partial}{\partial t} v(x, t)-\left(a(x) v^{\prime}(x, t)\right)^{\prime}+b(x) v^{\prime}(x, t)+c(x) v(x, t)=d(x) f\left(x, t, v(x, t)+u_{B}(x), u^{\prime}(x, t)+u_{B}^{\prime}(x)\right) \tag{76}
\end{equation*}
$$

Discretizing with respect to the space variable x and a Crank-Nicolson time stepper for the system of ODEs

$$
\mathbf{W} \frac{d}{d t} \vec{v}(t)+\mathbf{A} \vec{v}(t)=\mathbf{M} \vec{f}\left(t, \vec{v}(t)+\vec{u}_{B}\right)
$$

leads to a nonlinear system of equations for each time step $\vec{v}(t)=\vec{v}_{n} \rightarrow \vec{v}(t+\Delta t)=\vec{v}_{n+1}$.

$$
\begin{aligned}
\mathbf{W} \frac{\vec{v}_{n+1}-\vec{v}_{n}}{\Delta t}+\mathbf{A} \frac{\vec{v}_{n+1}+\vec{v}_{n}}{2}= & \frac{1}{2} \mathbf{M}\left(\vec{f}\left(t, \vec{v}_{n}+\vec{u}_{B}\right)+\vec{f}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}\right)\right) \\
\mathbf{W} \vec{v}_{n+1}+\frac{\Delta t}{2} \mathbf{A} \vec{v}_{n+1}-\frac{\Delta t}{2} \mathbf{M}\left(\vec{f}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}\right)\right)= & +\mathbf{W} \vec{v}_{n}-\frac{\Delta t}{2} \mathbf{A} \vec{v}_{n}+\frac{\Delta t}{2} \mathbf{M} \vec{f}\left(t, \vec{v}_{n}+\vec{u}_{B}\right)=: \mathbf{G}\left(\overrightarrow{\mathbf{v}}_{\mathbf{n}}\right) \\
\vec{f}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}+\vec{\phi}\right) & \approx \vec{f}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}\right)+\vec{f}_{u}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}\right) \vec{\phi} \\
\mathbf{W} \vec{\phi}+\frac{\Delta t}{2} \mathbf{A} \vec{\phi}-\frac{\Delta t}{2} \mathbf{M} f_{u}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}\right) \vec{\phi}= & \mathbf{G}\left(\overrightarrow{\mathbf{v}}_{\mathbf{n}}\right)-\mathbf{W} \vec{v}_{n+1}-\frac{\Delta t}{2} \mathbf{A} \vec{v}_{n+1}+ \\
& +\frac{\Delta t}{2} \mathbf{M} \vec{f}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}\right) \\
\left(\mathbf{W}+\frac{\Delta t}{2} \mathbf{A}-\frac{\Delta t}{2} \mathbf{M} f_{u}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}\right)\right) \vec{\phi}= & \mathbf{G}\left(\overrightarrow{\mathbf{v}}_{\mathbf{n}}\right)-\mathbf{W} \vec{v}_{n+1}-\frac{\Delta t}{2} \mathbf{A} \vec{v}_{n+1}+ \\
& +\frac{\Delta t}{2} \mathbf{M} \vec{f}\left(t+\Delta t, \vec{v}_{n+1}+\vec{u}_{B}\right) \\
& \vec{v}_{n+1} \rightarrow \\
\rightarrow & \vec{v}_{n+1}+\vec{\phi} \text { and iterate until }\|\vec{\phi}\| \text { small }
\end{aligned}
$$

As initial guess for \vec{v}_{n+1} the previous solution \vec{v}_{n} is used. For small time steps this is very good approximation and thus Newton's method should converge after very few steps. This algorithm is implemented in IBVP1DNL ().

7.7 The second order dynamic problem

The approach to solve the dynamic problem (67)

$$
w_{2}(x) \frac{\partial^{2}}{\partial t^{2}} u(x, t)+2 w_{1}(x) \frac{\partial}{\partial t} u(x, t)-\left(a(x) u^{\prime}(x, t)\right)^{\prime}+b(x) u^{\prime}(x, t)+c(x) u(x, t)+d(x) f(x, t)=0
$$

is very similar to the 2 D approach presented in Section 6.8.3. The first step is to solve the static problem

$$
-\left(a(x) u_{B}^{\prime}(x)\right)^{\prime}+b(x) u_{B}^{\prime}(x)+c(x) u_{B}(x)=0 \quad \text { with } \quad u_{B}\left(x_{i}\right)=g_{D} \quad \text { or } \quad a\left(x_{i}\right) u_{B}^{\prime}\left(x_{i}\right)=g_{N 1}+g_{N 2} u_{B}\left(x_{i}\right)
$$

[^20]Then the new function ${ }^{30} v(x, t)=u(x, t)-u_{B}(x)$ is a solution of an initial boundary value problem with no constant boundary contributions, i.e. at the boundary points x_{i}

$$
v\left(x_{i}, t\right)=0 \quad \text { or } \quad a\left(x_{i}\right) v^{\prime}\left(x_{i}, t\right)=0+g_{N 2}\left(x_{i}\right) v\left(x_{i}, t\right)
$$

and the initial condition $v(x, 0)=u_{0}(x)-u_{B}(x)$. This problem is then discretized with respect to x, leading to a system of ordinary differential equations or order 2 , similar to equation (58).

$$
\begin{equation*}
\mathbf{W}_{2} \frac{d^{2}}{d t^{2}} \vec{v}(t)+2 \mathbf{W}_{1} \frac{d}{d t} \vec{v}(t)+\mathbf{A} \vec{v}(t)=\mathbf{M} \vec{f}(t) \quad \text { with } \quad \vec{v}(0)=\vec{u}_{0}-\vec{u}_{B} \quad \text { and } \quad \frac{d}{d t} v(0)=\vec{v}_{0} \tag{77}
\end{equation*}
$$

7.7.1 An implicit solver

The implementation assumes that the coefficient functions w_{2}, w_{1}, a, b, c and d depend x only, while f may depend on time t and position x. Then use an implicit approximation to advance the solution from time $t-\Delta t$ and t to $t+\Delta t$.

$$
\begin{aligned}
\mathbf{W}_{2} \frac{d^{2}}{d t^{2}} \vec{v}(t)= & -2 \mathbf{W}_{1} \frac{d}{d t} \vec{v}(t)-\mathbf{A} \vec{v}(t)+\mathbf{M} \vec{f}(t) \\
\mathbf{W}_{2} \frac{\vec{v}(t-\Delta t)-2 \vec{v}(t)+\vec{v}(t+\Delta t)}{(\Delta t)^{2}}= & -2 \mathbf{W}_{1} \frac{\vec{v}(t+\Delta t)-\vec{v}(t-\Delta t)}{2 \Delta t}- \\
& -\mathbf{A} \frac{\vec{v}(t-\Delta t)+2 \vec{v}(t)+\vec{v}(t+\Delta t)}{4}+\mathbf{M} \vec{f}(t) \\
\left(+\mathbf{W}_{2}+\Delta t \mathbf{W}_{1}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(t+\Delta t)= & -\left(\mathbf{W}_{2}-\Delta t \mathbf{W}_{1}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(t-\Delta t)+ \\
& +\left(2 \mathbf{W}_{2}-\frac{(\Delta t)^{2}}{2} \mathbf{A}\right) \vec{v}(t)+(\Delta t)^{2} \mathbf{M} \vec{f}(t)
\end{aligned}
$$

This scheme is unconditionally stable and consistent of order 2. Observe that the matrices do not change as time advances. Thus use again a sparsity preserving LU factorization for the time stepping.

To construct the solution at the initial time Δt use the initial value u_{0} and initial velocity v_{0} and a scheme with the same order of consistency, with respect to time.

$$
\begin{aligned}
& \frac{d}{d t} \vec{v}(0)=\vec{v}_{0} \approx \frac{\vec{v}(\Delta t)-\vec{v}(-\Delta t)}{2 \Delta t} \Longrightarrow \vec{v}(-\Delta t) \approx \vec{v}(\Delta t)-2 \Delta t \vec{v}_{0} \\
& \left(+\mathbf{W}_{2}+\Delta t \mathbf{W}_{1}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(+\Delta t)=-\left(\mathbf{W}_{2}-\Delta t \mathbf{W}_{1}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(-\Delta t)+ \\
& +\left(2 \mathbf{W}_{2}-\frac{(\Delta t)^{2}}{2} \mathbf{A}\right) \vec{v}(0)+(\Delta t)^{2} \mathbf{M} \vec{f}(0) \\
& =-\left(\mathbf{W}_{2}-\Delta t \mathbf{W}_{1}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right)\left(\vec{v}(+\Delta t)-2 \Delta t \vec{v}_{0}\right)+ \\
& +\left(2 \mathbf{W}_{2}-\frac{(\Delta t)^{2}}{2} \mathbf{A}\right) \vec{v}(0)+(\Delta t)^{2} \mathbf{M} \vec{f}(0) \\
& 2\left(+\mathbf{W}_{2}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(+\Delta t)=+2 \Delta t\left(\mathbf{W}_{2}-\Delta t \mathbf{W}_{1}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}_{0}+ \\
& +2\left(\mathbf{W}_{2}-\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(0)+(\Delta t)^{2} \mathbf{M} \vec{f}(0) \\
& \left(+\mathbf{W}_{2}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(+\Delta t)=\Delta t\left(\mathbf{W}_{2}-\Delta t \mathbf{W}_{1}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}_{0}+ \\
& +\left(\mathbf{W}_{2}-\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(0)+\frac{(\Delta t)^{2}}{2} \mathbf{M} \vec{f}(0) .
\end{aligned}
$$

If there is no damping $\left(\mathbf{W}_{1}=\mathbf{0}\right)$ a linear system of the same type as for the time stepper has to be solved.

[^21]
7.7.2 An explicit solver

To construct an explicit solver for the system of ODEs (77)

$$
\mathbf{W}_{2} \frac{d^{2}}{d t^{2}} \vec{v}(t)+2 \mathbf{W}_{1} \frac{d}{d t} \vec{v}(t)+\mathbf{A} \vec{v}(t)=\mathbf{M} \vec{f}(t)
$$

use the finite difference approximations

$$
\begin{aligned}
& \mathbf{W}_{2} \frac{d^{2}}{d t^{2}} \vec{v}(t) \approx \mathbf{W}_{2} \frac{\vec{v}(t-\Delta t)-2 \vec{v}(t)+\vec{v}(t+\Delta t)}{(\Delta t)^{2}} \\
& \mathbf{W}_{1} \frac{d}{d t} \vec{v}(t) \approx \mathbf{W}_{1} \frac{-\vec{v}(t-\Delta t)+\vec{v}(t+\Delta t)}{2 \Delta t}
\end{aligned}
$$

These approximations lead to

$$
\left(\frac{\mathbf{W}_{2}}{(\Delta t)^{2}}-\frac{\mathbf{W}_{1}}{2 \Delta t}\right) \vec{v}(t-\Delta t)+\left(-\frac{2 \mathbf{W}_{2}}{(\Delta t)^{2}}+\mathbf{A}\right) \vec{v}(t)+\left(\frac{\mathbf{W}_{2}}{(\Delta t)^{2}}+\frac{\mathbf{W}_{1}}{2 \Delta t}\right) \vec{v}(t+\Delta t)=\mathbf{M} \vec{f}(t)
$$

For given $\vec{v}(t-\Delta t$ and $\vec{v}(t)$ solve for $\vec{v}(t+\Delta t)$.

$$
\begin{aligned}
\left(\frac{\mathbf{W}_{2}}{(\Delta t)^{2}}+\frac{\mathbf{W}_{1}}{2 \Delta t}\right) \vec{v}(t+\Delta t) & =\left(\frac{2 \mathbf{W}_{2}}{(\Delta t)^{2}}-\mathbf{A}\right) \vec{v}(t)-\left(\frac{\mathbf{W}_{2}}{(\Delta t)^{2}}-\frac{\mathbf{W}_{1}}{2 \Delta t}\right) \vec{v}(t-\Delta t)+\mathbf{M} \vec{f}(t) \\
\left(\mathbf{W}_{2}+\frac{\Delta t}{2} \mathbf{W}_{1}\right) \vec{v}(t+\Delta t) & =\left(2 \mathbf{W}_{2}-(\Delta t)^{2} \mathbf{A}\right) \vec{v}(t)-\left(\mathbf{W}_{2}-\frac{\Delta t}{2} \mathbf{W}_{1}\right) \vec{v}(t-\Delta t)+(\Delta t)^{2} \mathbf{M} \vec{f}(t)
\end{aligned}
$$

The initial conditions

$$
\vec{v}(0)=\vec{u}_{0}-\vec{u}_{B} \quad \text { and } \quad \frac{d}{d t} v(0)=\vec{v}_{0}
$$

are implemented by

$$
\vec{v}_{0} \approx \frac{\vec{v}(\Delta t)-\vec{v}(-\Delta t)}{2 \Delta t} \quad \text { or } \quad \vec{v}(-\Delta t) \approx \vec{v}(\Delta t)-2 \Delta t \vec{v}_{0}
$$

and thus the first time step is given by

$$
\begin{aligned}
\left(\mathbf{W}_{2}+\frac{\Delta t}{2} \mathbf{W}_{1}\right) \vec{v}(t+\Delta t) & =\left(2 \mathbf{W}_{2}-(\Delta t)^{2} \mathbf{A}\right) \vec{v}(t)-\left(\mathbf{W}_{2}-\frac{\Delta t}{2} \mathbf{W}_{1}\right) \vec{v}(t-\Delta t)+(\Delta t)^{2} \mathbf{M} \vec{f}(t) \\
2 \mathbf{W}_{2} \vec{v}(\Delta t) & =\left(2 \mathbf{W}_{2}-(\Delta t)^{2} \mathbf{A}\right) \vec{v}(0)+2\left(\Delta t \mathbf{W}_{2}-(\Delta t)^{2} \mathbf{W}_{1}\right) \vec{v}_{0}+(\Delta t)^{2} \mathbf{M} \vec{f}(0)
\end{aligned}
$$

This scheme is conditionally stable with the stability condition

$$
\lambda \leq \frac{4}{(\Delta t)^{2}} \quad \text { or } \quad \Delta t \leq \frac{2}{\sqrt{\lambda}} \quad \text { for all generalized eigenvalues of } \quad \mathbf{A} \vec{u}=\lambda \mathbf{W}_{2} \vec{u}
$$

7.8 Nonlinear boundary value problems, Newton's method and partial substitution

For smooth functions $a\left(x, u, u^{\prime}\right)$ and $f\left(x, u, u^{\prime}\right)$ examine a nonlinear boundary value problem of the form (68)

$$
\begin{equation*}
-\left(a\left(x, u(x), u^{\prime}(x)\right) u^{\prime}(x)\right)^{\prime}+b(x) u^{\prime}(x)+c(x) u(x)=d(x) f\left(x, u(x), u^{\prime}(x)\right) \tag{78}
\end{equation*}
$$

with linear, constant boundary conditions, Dirichlet or Neumann. The essential tool is Newton's method, combined with a partial substitution. For this use a linear Taylor approximation of the nonlinear function $f\left(x, u, u^{\prime}\right)$

$$
f\left(x, u+\phi, u^{\prime}+\phi^{\prime}\right) \approx f\left(x, u, u^{\prime}\right)+f_{u}\left(x, u, u^{\prime}\right) \phi+f_{u^{\prime}}\left(x, u, u^{\prime}\right) \phi^{\prime}
$$

with the notations $f_{u}=\frac{\partial f}{\partial u}$ and $f_{u^{\prime}}=\frac{\partial f}{\partial u^{\prime}}$. For an approximate solution $u_{n}(x)$ search a solution of the form $u_{n}(x)+\phi(x)$. Examine the linear boundary value problem for the perturbation ϕ.

$$
\begin{aligned}
-\left(a u_{n}^{\prime}+\phi^{\prime}\right)^{\prime}+b\left(u_{n}^{\prime}+\phi^{\prime}\right)+c\left(u_{n}+\phi\right)= & d \cdot\left(f\left(\cdot, u_{n}, u_{n}^{\prime}\right)+\right. \\
& \left.+f_{u}\left(\cdot, u_{n}, u_{n}^{\prime}\right) \phi+f_{u^{\prime}}\left(\cdot, u_{n}, u_{n}^{\prime}\right) \phi^{\prime}\right) \\
-\left(a \phi^{\prime}\right)^{\prime}+\left(b-d \cdot f_{u^{\prime}}\left(\cdot, u_{n}, u_{n}^{\prime}\right)\right) \phi^{\prime}+\left(c-d \cdot f_{u}\left(\cdot, u_{n}, u_{n}^{\prime}\right)\right) \phi= & +\left(a u_{n}^{\prime}\right)^{\prime}-b u_{n}^{\prime}-c u_{n}+d \cdot f\left(\cdot, u_{n}, u_{n}^{\prime}\right)
\end{aligned}
$$

and then update the solution to $u_{n+1}=u_{n}+\phi$. For the perturbation ϕ use zero boundary conditions, assuming that u_{0} satisfied the boundary conditions. For an initial guess $u_{0}(x)$ close enough to an isolated solution the Newton based algorithm will converge.

To implement the above algorithm in FEMoctave start out with an initial function $u(x)=u_{0}(x)$, hopefully close to the true solution.

- Start with the function $u_{0}(x)$ and evaluate (if necessary) $f_{0}=f\left(x, u_{0}(x)\right)$, or $f_{0}=f\left(x, u_{0}(x), u_{0}^{\prime}(x)\right)$ at the nodes. Evaluate at the Gauss points (if necessary)

$$
a_{0}=a\left(x, u_{0}(x), u_{0}^{\prime}(x)\right) \quad, \quad b_{0}=b(x) \quad \text { and } \quad c_{0}=c(x)
$$

- Solve the boundary value problem for u_{n}

$$
-\left(a_{0} u_{n}^{\prime}(x)\right)^{\prime}+b_{0} u_{n}^{\prime}(x)+c_{0} u_{n}(x)=d \cdot f_{0}
$$

with the correct boundary conditions.

- Repeat
- Store the current solution $u_{\text {old }}=u_{n}$.
- If a depends on u or u^{\prime} evaluate

$$
a_{n}=x\left(x, u_{n}(x), u_{n}^{\prime}(x)\right) \quad \text { at the Gauss points. }
$$

If a does not depend on u and u^{\prime}, reuse $a_{n}=a_{0}$.

- If f depends on u or u^{\prime} evaluate

$$
\begin{aligned}
f_{n} & =f\left(x, u_{n}(x), u_{n}^{\prime}(x)\right) \quad \text { at the nodes } \\
f_{u} & =\frac{\partial}{\partial u} f\left(x, u_{n}(x), u_{n}^{\prime}(x)\right) \quad \text { at the Gauss points } \\
f_{u^{\prime}} & =\frac{\partial}{\partial u^{\prime}} f\left(x, u_{n}(x), u_{n}^{\prime}(x)\right) \quad \text { at the Gauss points }
\end{aligned}
$$

- Evaluate

$$
\operatorname{RHS}_{n}=-\left(a_{n} u_{n}^{\prime}\right)^{\prime}+b_{0} u_{n}^{\prime}+c_{0} u_{n}-d \cdot f_{n}
$$

This can be done with a matrix multiplication.

- Solve the boundary value problem for the perturbation ϕ

$$
-\left(a_{n} \phi^{\prime}(x)\right)^{\prime}+\left(b_{0}-d \cdot f_{u^{\prime}}\right) \phi^{\prime}(x)+\left(c_{0}-d \cdot f_{u}\right) \phi(x)=-\mathrm{RHS}_{n}
$$

with homogeneous boundary conditions.

- Update $u_{n} \longrightarrow u_{n}+\phi$.
- If f depends on u or u^{\prime} evaluate at the nodes.

$$
f_{n}=f\left(x, u_{n}(x), u_{n}^{\prime}(x)\right)
$$

- If a depends on u or u^{\prime} evaluate

$$
a_{n}=x\left(x, u_{n}(x), u_{n}^{\prime}(x)\right) \quad \text { at the Gauss points. }
$$

If a does not depend on u, reuse $a_{n}=a_{0}$.

- Solve the boundary value problem for u_{n}

$$
-\left(a_{0} u_{n}^{\prime}(x)\right)^{\prime}+b_{0} u^{\prime}(x)+c_{0} u_{n}(x)=d \cdot f_{n}
$$

with the correct boundary conditions.

- until $\left\|u_{n}-u_{\text {old }}\right\|$ small enough or too many iterations.

For the convergence test absolute and relative values are use, if one of them is small enough the algorithm stops.
This is not a pure Newton's approach, but a combination with a (partial) substitution method.

8 The Algorithms for Plane Elasticity and Axially Symmetric Elasticity

Find the description of the plane elasticity problems in Section 2.14, starting on page 12.

8.1 The plane stress problem

For a plane stress problem it is assumed that there are no stresses in z-direction, i.e. $\sigma_{z}=\tau_{x z}=\tau_{y z}=0$. The elastic energy density is given by equation (21), i.e.

$$
W_{\text {stress }}=\frac{E}{2\left(1-\nu^{2}\right)}\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \nu \varepsilon_{x x} \varepsilon_{y y}+2(1-\nu) \varepsilon_{x y}^{2}\right)
$$

With FEMoctave examine plane stress deformations with (only) three types of boundary conditions.

$$
\begin{align*}
\vec{u} & =\vec{g}_{D} & & \text { on Dirichlet boundary } \Gamma_{1}, \text { i.e. prescibed displacement } \\
\text { force density } & =\vec{g}_{N} & & \text { on Neumann boundary } \Gamma_{2}, \text { i.e. prescibed force density } \tag{79}\\
\text { force density } & =\overrightarrow{0} & & \text { on free boundary } \Gamma_{3}
\end{align*}
$$

With this the total energy of a plane stress problem can be written in the form ${ }^{31}$

$$
\begin{align*}
U(\vec{u})= & U_{\text {elast }}+U_{\text {Vol }}+U_{\text {Surf }} \tag{80}\\
= & \iint_{\Omega} \frac{1}{2} \frac{E}{\left(1-\nu^{2}\right)}\left\langle\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & 2(1-\nu)
\end{array}\right] \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle d A- \\
& -\iint_{\Omega} \vec{f} \cdot \vec{u} d A-\int_{\Gamma_{2}} \vec{g}_{N} \cdot \vec{u} d s .
\end{align*}
$$

Using the Bernoulli principle this energy has to be minimized, leading to the Euler-Lagrange equations (23). A discretization of the displacements $u_{1}(x, y)$ and $u_{2}(x, y)$ leads to a vector $\vec{u}=\left(\vec{u}_{1}, \vec{u}_{2}\right)$ and the above total energy has to be written in the form

$$
\frac{1}{2}\langle\vec{u}, \mathbf{A} \vec{u}\rangle+\langle\vec{u}, \mathbf{W} \vec{f}\rangle .
$$

Then the approximate minimizer is given as solution of the linear system $\mathbf{A} \vec{u}=-\mathbf{W} \vec{f}$. This setup is very similar to the connections shown in Figure 70 on page 133.

Another approach is to use perturbed displacements $u_{1}+\phi_{1}$ and $u_{2}+\phi_{2}$ and dropping higher order contributions in ϕ_{i}. Use the approximations

$$
\begin{aligned}
\varepsilon_{x x} & =\frac{\partial\left(u_{1}+\phi_{1}\right)}{\partial x}=\frac{\partial u_{1}}{\partial x}+\frac{\partial \phi_{1}}{\partial x} \quad, \quad \varepsilon_{y y}=\frac{\partial\left(u_{2}+\phi_{2}\right)}{\partial y}=\frac{\partial u_{2}}{\partial y}+\frac{\partial \phi_{2}}{\partial y} \\
\varepsilon_{x x}^{2} & =\left(\frac{\partial\left(u_{1}+\phi_{1}\right)}{\partial x}\right)^{2} \approx\left(\frac{\partial u_{1}}{\partial x}\right)^{2}+2\left(\frac{\partial u_{1}}{\partial x}\right)\left(\frac{\partial \phi_{1}}{\partial x}\right) \\
\varepsilon_{y y}^{2} & \approx\left(\frac{\partial u_{2}}{\partial y}\right)^{2}+2\left(\frac{\partial u_{2}}{\partial y}\right)\left(\frac{\partial \phi_{2}}{\partial y}\right) \\
\varepsilon_{x x} \varepsilon_{y y} & \approx \frac{\partial u_{1}}{\partial x} \frac{\partial u_{2}}{\partial y}+\frac{\partial u_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial y}+\frac{\partial u_{2}}{\partial y} \frac{\partial \phi_{1}}{\partial x} \\
2 \varepsilon_{x y} & =\frac{\partial\left(u_{1}+\phi_{1}\right)}{\partial y}+\frac{\partial\left(u_{2}+\phi_{2}\right)}{\partial x}=\frac{\partial u_{1}}{\partial y}+\frac{\partial \phi_{1}}{d y}+\frac{\partial u_{2}}{\partial x}+\frac{\partial \phi_{2}}{\partial x} \\
4 \varepsilon_{x y}^{2} & \approx\left(\frac{\partial u_{1}}{\partial y}\right)^{2}+\left(\frac{\partial u_{2}}{\partial x}\right)^{2}+2 \frac{\partial u_{1}}{\partial y}\left(\frac{\partial \phi_{1}}{\partial y}+\frac{\partial \phi_{2}}{\partial x}\right)+2 \frac{\partial u_{2}}{\partial x}\left(\frac{\partial \phi_{1}}{\partial y}+\frac{\partial \phi_{2}}{\partial x}\right) \\
& =\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)^{2}+2 \frac{\partial \phi_{1}}{\partial y}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)+2 \frac{\partial \phi_{2}}{\partial x}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)
\end{aligned}
$$

[^22]Based on $\frac{2\left(1-\nu^{2}\right)}{E} W(u)=\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \nu \varepsilon_{x x} \varepsilon_{y y}+2(1-\nu) \varepsilon_{x y}^{2}$ conclude

$$
\begin{aligned}
\frac{2\left(1-\nu^{2}\right)}{E}(W(\vec{u}+\vec{\phi})-W(\vec{u})) \approx & 2 \frac{\partial u_{1}}{\partial x} \frac{\partial \phi_{1}}{\partial x}+2 \frac{\partial u_{2}}{\partial y} \frac{\partial \phi_{2}}{\partial y}+ \\
& +2 \nu\left(\frac{\partial u_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial y}+\frac{\partial u_{2}}{\partial y} \frac{\partial \phi_{1}}{\partial x}\right)+ \\
& +\frac{4}{4}(1-\nu)\left(\frac{\partial \phi_{1}}{\partial y}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)+\frac{\partial \phi_{2}}{\partial x}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right)
\end{aligned}
$$

and use

$$
\begin{aligned}
\iint_{\Omega} \vec{f} \cdot(\vec{u}+\vec{\phi}) d A & =\iint_{\Omega} \vec{f} \cdot \vec{u} d A+\iint_{\Omega} f_{1} \phi_{1}+f_{2} \phi_{2} d A \\
\int_{\Gamma_{2}} \vec{g}_{N} \cdot(\vec{u}+\vec{\phi}) d s & =\int_{\Gamma_{2}} \vec{g}_{N} \cdot \vec{u} d s+\int_{\Gamma_{2}} g_{1} \phi_{1}+g_{2} \phi_{2} d s .
\end{aligned}
$$

This leads to

$$
\begin{align*}
U(\vec{u}+\vec{\phi})-U(\vec{u}) \approx & +\iint_{\Omega} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{1}}{\partial x}\left(\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{1}}{\partial y}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right)-\phi_{1} f_{1} d A+ \\
& +\iint_{\Omega} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{2}}{\partial y}\left(\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{2}}{\partial x}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right)-\phi_{2} f_{2} d A- \\
& -\int_{\Gamma_{2}} \phi_{1} g_{1}+\phi_{2} g_{2} d s=0 . \tag{81}
\end{align*}
$$

Using Bernoulli's principle this expression should vanish for all perturbations $\vec{\phi}$. Use discrete approximations of the functions u_{i} and ϕ_{i} to write the vanishing condition for expression (81) in the form

$$
\langle\vec{\phi}, \mathbf{A} \vec{u}+\mathbf{W} \vec{f}\rangle=0 \quad \text { for all } \vec{\phi} .
$$

8.2 The plane stress eigenvalue and dynamic problem

For the eigenvalue problem (25)

$$
\begin{aligned}
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}}{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}\right)=\lambda \rho u_{1} \\
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}{\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}}\right)=\lambda \rho u_{2}
\end{aligned}
$$

use the equation

$$
\begin{aligned}
0= & +\iint_{\Omega} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{1}}{\partial x}\left(\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{1}}{\partial y}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right)-\phi_{1} \lambda \rho u_{1} d A+ \\
& +\iint_{\Omega} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{2}}{\partial y}\left(\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{2}}{\partial x}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right)-\phi_{2} \lambda \rho u_{2} d A
\end{aligned}
$$

for all smooth test functions ϕ_{1} and ϕ_{2}. Write this in the form $\langle\vec{\phi}, \mathbf{A} \vec{u}-\lambda \mathbf{W} \vec{u}\rangle=0$ to lead to a generalized eigenvalue problem $\mathbf{A} \vec{u}=\lambda \mathbf{W} \vec{u}$. FEMoctave allows to determine a few of the smallest eigenvalues λ and the corresponding eigen modes.

For the dynamic problem (24)

$$
\begin{aligned}
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}}{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}\right)+f_{1}=\rho \frac{\partial^{2}}{\partial t^{2}} u_{1} \\
& -\operatorname{div}\left(\frac{E}{1-\nu^{2}}\binom{\frac{1-\nu}{2}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)}{\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}}\right)+f_{2}=\rho \frac{\partial^{2}}{\partial t^{2}} u_{2}
\end{aligned}
$$

use the equation

$$
\begin{aligned}
0= & +\iint_{\Omega} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{1}}{\partial x}\left(\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{1}}{\partial y}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right)+\phi_{1} f_{1}-\phi_{1} \rho \frac{\partial^{2}}{\partial t^{2}} u_{1} d A+ \\
& +\iint_{\Omega} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{2}}{\partial y}\left(\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{2}}{\partial x}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right)+\phi_{2} f_{2}-\phi_{2} \rho \frac{\partial^{2}}{\partial t^{2}} u_{2} d A
\end{aligned}
$$

for all smooth test functions ϕ_{1} and ϕ_{2}. This will lead to a dynamic problem of the form

$$
\left\langle\vec{\phi}, \mathbf{A} \vec{u}-\mathbf{W}_{\mathbf{f}} \vec{f}+\mathbf{W}_{\rho} \frac{d^{2}}{d t^{2}} \vec{u}\right\rangle=0 \quad \text { for all } \quad \vec{\phi}
$$

The matrices $\mathbf{A}, \mathbf{W}_{\rho}$ and \mathbf{W}_{f} have to take the active degrees of freedom into account, leading to a vector \vec{v}, the active contribution of \vec{u}. These matrices are generated by the codes PStressEquation*WM.m for elements of order 1, 2 and 3 . As consequence the dynamic problem to be solved is a system of ODEs

$$
\begin{equation*}
\mathbf{W}_{\rho} \frac{d^{2}}{d t^{2}} \vec{u}(t)+\mathbf{A} \vec{u}(t)=\mathbf{W}_{\mathbf{f}} \vec{f}(t) \tag{82}
\end{equation*}
$$

with appropriate initial conditions $\vec{u}(0)=\vec{u}_{0}-\vec{u}_{B}$ and $\frac{d}{d t} \vec{u}(0)=\vec{v}_{0}$. Algorithms to solve this problem are spelled out in Section 7.7, used for the wave equation (77) with one space variable. An implicit and an explicit solver are used for dynamic plane stress and strain problems.

For the implicit approximation adapt the notation from Section 7.7, leading to the result

$$
\begin{aligned}
\mathbf{W}_{\rho} \frac{d^{2}}{d t^{2}} \vec{v}(t)= & -\mathbf{A} \vec{v}(t)+\mathbf{W}_{f} \vec{f}(t) \\
\mathbf{W}_{\rho} \frac{\vec{v}(t-\Delta t)-2 \vec{v}(t)+\vec{v}(t+\Delta t)}{(\Delta t)^{2}}= & -\mathbf{A} \frac{\vec{v}(t-\Delta t)+2 \vec{v}(t)+\vec{v}(t+\Delta t)}{4}+\mathbf{W}_{f} \vec{f}(t) \\
\left(+\mathbf{W}_{\rho}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(t+\Delta t)= & -\left(\mathbf{W}_{\rho}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(t-\Delta t)+ \\
& +\left(2 \mathbf{W}_{\rho}-\frac{(\Delta t)^{2}}{2} \mathbf{A}\right) \vec{v}(t)+(\Delta t)^{2} \mathbf{W}_{f} \vec{f}(t) .
\end{aligned}
$$

For the first step use $\vec{v}(-\Delta t) \approx \vec{v}(\Delta t)-2 \Delta t \vec{v}_{0}$, leading to

$$
\left(+\mathbf{W}_{\rho}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}(\Delta t)=\Delta t\left(\mathbf{W}_{\rho}+\frac{(\Delta t)^{2}}{4} \mathbf{A}\right) \vec{v}_{0}+\left(\mathbf{W}_{\rho}-\frac{(\Delta t)^{2}}{4} \mathbf{A}\right)\left(\vec{u}_{0}-\vec{u}_{B}\right)+\frac{(\Delta t)^{2}}{2} \mathbf{W}_{f} \vec{f}(0)
$$

where \vec{u}_{B} is the steady state contribution with inhomogeneous boundary contributions.
For the explicit solver of the ODE (82) use

$$
\begin{aligned}
\mathbf{W}_{\rho} \frac{d^{2}}{d t^{2}} \vec{v}(t) & =-\mathbf{A} \vec{v}(t)+\mathbf{W}_{f} \vec{f}(t) \\
\mathbf{W}_{\rho} \frac{\vec{v}(t-\Delta t)-2 \vec{v}(t)+\vec{v}(t+\Delta t)}{(\Delta t)^{2}} & =-\mathbf{A} \vec{v}(t)+\mathbf{W}_{f} \vec{f}(t) \\
\mathbf{W}_{\rho} \vec{v}(t+\Delta t) & =-\mathbf{W}_{\rho} \vec{v}(t-\Delta t)+\left(2 \mathbf{W}_{\rho}-(\Delta t)^{2} \mathbf{A}\right) \vec{v}(t)+(\Delta t)^{2} \mathbf{W}_{f} \vec{f}(t)
\end{aligned}
$$

and for the first step use again the approximation $\vec{y}(-\Delta t) \approx \vec{v}(+\Delta t)-2 \Delta t \vec{v}_{0}$, leading to

$$
\begin{aligned}
\mathbf{W}_{\rho} \vec{v}(+\Delta t) & =-\mathbf{W}_{\rho}\left(\vec{v}(+\Delta t)-2 \Delta t \vec{v}_{0}\right)+\left(2 \mathbf{W}_{\rho}-(\Delta t)^{2} \mathbf{A}\right) \vec{v}(0)+(\Delta t)^{2} \mathbf{W}_{f} \vec{f}(0) \\
2 \mathbf{W}_{\rho} \vec{v}(+\Delta t) & =+2 \Delta t \mathbf{W}_{\rho} \vec{v}_{0}+\left(2 \mathbf{W}_{\rho}-(\Delta t)^{2} \mathbf{A}\right) \vec{v}(0)+(\Delta t)^{2} \mathbf{W}_{f} \vec{f}(0) \\
\mathbf{W}_{\rho} \vec{v}(+\Delta t) & =+\Delta t \mathbf{W}_{\rho} \vec{v}_{0}+\left(\mathbf{W}_{\rho}-\frac{(\Delta t)^{2}}{2} \mathbf{A}\right)\left(\vec{u}_{0}-\vec{u}_{B}\right)+\frac{(\Delta t)^{2}}{2} \mathbf{W}_{f} \vec{f}(0)
\end{aligned}
$$

This explicit scheme is conditionally stable with the stability condition

$$
\lambda \leq \frac{4}{(\Delta t)^{2}} \quad \text { or } \quad \Delta t \leq \frac{2}{\sqrt{\lambda}} \quad \text { for all generalized eigenvalues of } \quad \mathbf{A} \vec{u}=\lambda \mathbf{W}_{\rho} \vec{u}
$$

8.3 Construction of first order elements

The algorithm in this section is based on the results in Section 6.4 (p. 138), with the expressions in equation (81) to be integrated over a triangle T. The approximation consists of piecewise linear, triangular segments. Thus the first order partial derivatives are constant on each triangle. Consequently the strains are constant on each triangle. This is the reason for the name Constant Strain Triangle, short CST.

8.3.1 Integration of $f_{1} \phi_{1}+f_{2} \phi_{2}$

- If the values of the functions f_{1} and f_{2} at the Gauss points are denoted by the vectors \vec{f}_{1} and \vec{f}_{2}, then use the approximation

$$
\begin{aligned}
\iint_{T} f_{1} \phi_{1}+f_{2} \phi_{2} d A & \approx \frac{\operatorname{area}(T)}{3}\left(\left\langle\mathbf{M} \vec{\phi}_{1}, \overrightarrow{f_{1}}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{2}, \overrightarrow{f_{2}}\right\rangle\right) \\
& =\frac{\operatorname{area}(T)}{3}\left(\left\langle\vec{\phi}_{1}, \mathbf{M}^{T} \vec{f}_{1}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M}^{T} \vec{f}_{2}\right\rangle\right) .
\end{aligned}
$$

$\mathbf{M} \in \mathbb{R}^{3 \times 3}$ is the matrix for interpolation from the nodes to the Gauss points, given by

$$
\mathbf{M}=\frac{1}{6}\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]=\mathbf{M}^{T}
$$

- If the values of the functions f_{1} and f_{2} at the nodes are denoted by the vectors $\overrightarrow{f_{1}}$ and $\overrightarrow{f_{2}}$, then use the approximation

$$
\begin{aligned}
\iint_{T} f_{1} \phi_{1}+f_{2} \phi_{2} d A & \approx \frac{\operatorname{area}(T)}{3}\left(\left\langle\mathbf{M} \vec{\phi}_{1}, \mathbf{M} \overrightarrow{f_{1}}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{2}, \mathbf{M} \overrightarrow{f_{2}}\right\rangle\right) \\
& =\frac{\operatorname{area}(T)}{3}\left(\left\langle\vec{\phi}_{1}, \mathbf{M}^{T} \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M}^{T} \mathbf{M} \vec{f}_{2}\right\rangle\right)
\end{aligned}
$$

Thus find one contribution to (81). With a block matrix notation the above can be written in the form

$$
\frac{\operatorname{area}(T)}{3}\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{M}^{T} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}^{T}
\end{array}\right]\binom{\vec{f}_{1}}{\vec{f}_{2}}\right\rangle \quad \text { or } \frac{\operatorname{area}(T)}{3}\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{M}^{T} \mathbf{M} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}^{T} \mathbf{M}
\end{array}\right]\binom{\vec{f}_{1}}{\vec{f}_{2}}\right\rangle .
$$

8.3.2 Integration of the terms involving derivatives of ϕ_{1} and ϕ_{2}

For linear elements the gradient of the functions u_{i} and ϕ_{i} are constant and using equation (37) given by

$$
\nabla u=\frac{-1}{2 \operatorname{area}(T)}\left[\begin{array}{lll}
\left(y_{3}-y_{2}\right) & \left(y_{1}-y_{3}\right) & \left(y_{2}-y_{1}\right) \\
\left(x_{2}-x_{3}\right) & \left(x_{3}-x_{1}\right) & \left(x_{1}-x_{2}\right)
\end{array}\right] \cdot \vec{u}=\left[\begin{array}{c}
\mathbf{G}_{x} \\
\mathbf{G}_{y}
\end{array}\right] \vec{u} .
$$

Evaluate the coefficients E and ν at the Gauss points \vec{g}_{i} and define the averaged values

$$
a_{1}=\frac{1}{3} \sum_{i=1}^{3} \frac{E\left(\vec{g}_{i}\right)}{1-\nu^{2}\left(\vec{g}_{i}\right)} \quad, \quad a_{2}=\frac{1}{3} \sum_{i=1}^{3} \frac{\nu\left(\vec{g}_{i}\right) E\left(\vec{g}_{i}\right)}{1-\nu^{2}\left(\vec{g}_{i}\right)} \quad \text { and } \quad a_{3}=\frac{1}{3} \sum_{i=1}^{3} \frac{E\left(\vec{g}_{i}\right)}{2\left(1+\nu\left(\vec{g}_{i}\right)\right)} .
$$

This leads to the approximations

$$
\begin{aligned}
I_{\phi_{1}} & =\iint_{T} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{1}}{\partial x}\left(\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{1}}{\partial y}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right) d A \\
& \approx a_{1}\left\langle\mathbf{G}_{x} \vec{\phi}_{1}, \mathbf{G}_{x} \vec{u}_{1}\right\rangle+a_{2}\left\langle\mathbf{G}_{x} \vec{\phi}_{1}, \mathbf{G}_{y} \vec{u}_{2}\right\rangle+a_{3}\left\langle\mathbf{G}_{y} \vec{\phi}_{1}, \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x} \vec{u}_{2}\right\rangle \\
& =a_{1}\left\langle\vec{\phi}_{1}, \mathbf{G}_{x}^{T} \mathbf{G}_{x} \vec{u}_{1}\right\rangle+a_{2}\left\langle\vec{\phi}_{1}, \mathbf{G}_{x}^{T} \mathbf{G}_{y} \vec{u}_{2}\right\rangle+a_{3}\left\langle\vec{\phi}_{1}, \mathbf{G}_{y}^{T} \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{y}^{T} \mathbf{G}_{x} \vec{u}_{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
I_{\phi_{2}} & =\iint_{T} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{2}}{\partial y}\left(\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{2}}{\partial x}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right) d A \\
& \approx a_{1}\left\langle\mathbf{G}_{y} \vec{\phi}_{2}, \mathbf{G}_{y} \vec{u}_{2}\right\rangle+a_{2}\left\langle\mathbf{G}_{y} \vec{\phi}_{2}, \mathbf{G}_{x} \vec{u}_{1}\right\rangle+a_{3}\left\langle\mathbf{G}_{x} \vec{\phi}_{2}, \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x} \vec{u}_{2}\right\rangle \\
& =a_{1}\left\langle\vec{\phi}_{2}, \mathbf{G}_{y}^{T} \mathbf{G}_{y} \vec{u}_{2}\right\rangle+a_{2}\left\langle\vec{\phi}_{2}, \mathbf{G}_{y}^{T} \mathbf{G}_{x} \vec{u}_{1}\right\rangle+a_{3}\left\langle\vec{\phi}_{2}, \mathbf{G}_{x}^{T} \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x}^{T} \mathbf{G}_{x} \vec{u}_{2}\right\rangle
\end{aligned}
$$

With a block matrix notation write the above in the form

$$
I_{\vec{\phi}} \approx\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
a_{1} \mathbf{G}_{x}^{T} \mathbf{G}_{x}+a_{3} \mathbf{G}_{y}^{T} \mathbf{G}_{y} & a_{2} \mathbf{G}_{x}^{T} \mathbf{G}_{y}+a_{3} \mathbf{G}_{y}^{T} \mathbf{G}_{x} \\
a_{2} \mathbf{G}_{y}^{T} \mathbf{G}_{x}+a_{3} \mathbf{G}_{x}^{T} \mathbf{G}_{y} & a_{1} \mathbf{G}_{y}^{T} \mathbf{G}_{y}+a_{3} \mathbf{G}_{x}^{T} \mathbf{G}_{x}
\end{array}\right]\binom{\vec{u}_{1}}{\vec{u}_{2}}\right\rangle=:\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}}, \mathbf{G}\binom{\vec{u}_{1}}{\vec{u}_{2}}\right\rangle .
$$

The symmetric 6×6 matrix $\mathbf{G} \in \mathbb{R}^{6 \times 6}$ is the element stiffness matrix for the triangle T, containing contributions to (81).

8.3.3 The boundary integral

The boundary integral is similar to (38) on page 143 . With $\alpha=\frac{1-1 / \sqrt{3}}{2}$ use the symmetric interpolation matrix from nodes to Gauss points

$$
\mathbf{M}_{b}=\left[\begin{array}{cc}
1-\alpha & \alpha \\
\alpha & 1-\alpha
\end{array}\right]
$$

and the length L of the edge segment for the approximate integral

$$
\int_{\text {edge }} \vec{g}_{N} \cdot \vec{\phi} d s=\int_{\text {edge }} g_{1} \phi_{1}+g_{2} \phi_{2} d s \approx \frac{L}{2}\left\langle\vec{\phi}_{1}, \mathbf{M}_{b} \vec{g}_{1}\right\rangle+\frac{L}{2}\left\langle\vec{\phi}_{2}, \mathbf{M}_{b} \vec{g}_{2}\right\rangle
$$

where the functions g_{1} and g_{2} are evaluated at the Gauss points.

8.3.4 Construct a weight matrix W

For eigenvalue and dynamic problems it is necessary to evaluate

$$
\iint_{\Omega} \rho(x, y)\left(f_{1}(x, y) \phi_{1}(x, y)+f_{2}(x, y) \phi_{2}(x, y) d A \approx\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{W}_{1} & 0 \\
0 & \mathbf{W}_{2}
\end{array}\right]\binom{\vec{f}_{1}}{\vec{f}_{2}}\right\rangle\right.
$$

where $\vec{\phi}_{i}$ and \vec{f}_{i} are evaluated at the nodes. For a weight function $\rho(x, y)$ construct the matrix \mathbf{W}_{T} for a given triangle with the values of $\rho(x, y)$ at the Gauss points by

$$
\mathbf{W}_{T}=\left[\begin{array}{ccc}
\rho\left(\vec{g}_{1}\right) & 0 & 0 \\
0 & \rho\left(\vec{g}_{2}\right) & 0 \\
0 & 0 & \rho\left(\vec{g}_{3}\right)
\end{array}\right]
$$

and then use the interpolation matrix \mathbf{M} from nodes to Gauss points.

$$
\begin{aligned}
\iint_{T} \rho\left(f_{1} \phi_{1}+f_{2} \phi_{2}\right) d A & \approx \frac{\operatorname{area}(T)}{3}\left(\left\langle\mathbf{W}_{T} \mathbf{M} \vec{\phi}_{1}, \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\mathbf{W}_{T} \mathbf{M} \vec{\phi}_{2}, \mathbf{M} \overrightarrow{f_{2}}\right\rangle\right) \\
& =\frac{\operatorname{area}(T)}{3}\left(\left\langle\vec{\phi}_{1}, \mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} \vec{f}_{2}\right\rangle\right) \\
& =\frac{\operatorname{area}(T)}{3}\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} & 0 \\
0 & \mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M}
\end{array}\right]\binom{\overrightarrow{f_{1}}}{\overrightarrow{f_{2}}}\right\rangle
\end{aligned}
$$

For the constant function $\rho(x, y)=1$ obtain

$$
\mathbf{M}^{T} \mathbf{W M}=\mathbf{M}^{2}=\frac{1}{4}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

8.4 Construction of second order elements

The algorithm in this section is based on the results in Section 6.5 (p. 144), with the expressions in equation (81) to be integrated over a triangle T. The approximation consists of piecewise quadratic, triangular segments. Thus the first order partial derivatives are linear on each triangle.

8.4.1 Integration of $f_{1} \phi_{1}+f_{2} \phi_{2}$

Use the Gauss weights $\vec{w} \in \mathbb{R}^{7}$ from equation (34) on page 138 for the approximate integration over one triangle T.

- If the values of the functions f_{1} and f_{2} at the seven Gauss points are denoted by the vectors \vec{f}_{1} and $\overrightarrow{f_{2}} \in \mathbb{R}^{7}$, then use the approximation

$$
\begin{aligned}
\iint_{T} f_{1} \phi_{1}+f_{2} \phi_{2} d A & \approx \operatorname{area}(T)\left(\left\langle\mathbf{M} \vec{\phi}_{1}, \operatorname{diag}(\vec{w}) \overrightarrow{f_{1}}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{2}, \operatorname{diag}(\vec{w}) \overrightarrow{f_{2}}\right\rangle\right) \\
& =\operatorname{area}(T)\left(\left\langle\vec{\phi}_{1}, \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \overrightarrow{f_{1}}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \vec{f}_{2}\right\rangle\right) \\
& =\operatorname{area}(T)\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{M}^{T} \operatorname{diag}(\vec{w}) & \mathbf{0} \\
\mathbf{0} & \mathbf{M}^{T} \operatorname{diag}(\vec{w})
\end{array}\right]\binom{\vec{f}_{1}}{\vec{f}_{2}}\right\rangle .
\end{aligned}
$$

$\mathbf{M} \in \mathbb{R}^{7 \times 6}$ is the matrix for interpolation from the nodes to the Gauss points, given in equation (41) on page 146.

- If the values of the functions f_{1} and f_{2} at the nodes are denoted by the vectors \vec{f}_{1} and $\vec{f}_{2} \in \mathbb{R}^{6}$, then use the approximation

$$
\begin{aligned}
\iint_{T} f_{1} \phi_{1}+f_{2} \phi_{2} d A & \approx \operatorname{area}(T)\left(\left\langle\mathbf{M} \vec{\phi}_{1}, \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{2}, \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}_{2}\right\rangle\right) \\
& =\operatorname{area}(T)\left(\left\langle\vec{\phi}_{1}, \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}_{2}\right\rangle\right) \\
& =\operatorname{area}(T)\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M}
\end{array}\right]\binom{\overrightarrow{f_{1}}}{\overrightarrow{f_{2}}}\right\rangle .
\end{aligned}
$$

Thus find one contribution to (81). Observe that $\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M}$ is a 6×6 matrix, independent on the triangle T.

8.4.2 Integration of the terms involving derivatives of ϕ_{1} and ϕ_{2}

Using the results from Section 6.5 the partial derivatives at the nodes of functions ϕ given at the notes find for the first component $\varphi_{x}=\frac{\partial \varphi}{\partial x}$ of the gradient at the Gauss points

$$
\left(\begin{array}{c}
\varphi_{x}\left(\vec{x}_{1}\right) \\
\varphi_{x}\left(\vec{x}_{2}\right) \\
\vdots \\
\varphi_{x}\left(\vec{x}_{7}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+y_{3}-y_{1}\right) \mathbf{M}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}=: \mathbf{G}_{x} \vec{\phi}
$$

and for the second component of the gradient

$$
\left(\begin{array}{c}
\varphi_{y}\left(\vec{x}_{1}\right) \\
\varphi_{y}\left(\vec{x}_{2}\right) \\
\vdots \\
\varphi_{y}\left(\vec{x}_{7}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}^{T}+\left(+x_{2}-x_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}=: \mathbf{G}_{y} \vec{\phi}
$$

Evaluate the coefficients E and ν at the Gauss points g_{i} and multiply by the Gauss integration weights to obtain the three diagonal matrices

$$
\mathbf{A}_{1}=\operatorname{diag}\left(\begin{array}{c}
w_{1} \frac{E\left(\vec{g}_{1}\right)}{1-\nu^{2}\left(\vec{g}_{1}\right)} \\
w_{2} \frac{E\left(g_{2}\right)}{1--^{2}\left(\vec{g}_{2}\right)} \\
\vdots \\
w_{7} \frac{E\left(\vec{g}_{7}\right)}{1-\nu^{2}\left(\vec{g}_{7}\right)}
\end{array}\right) \quad, \quad \mathbf{A}_{2}=\operatorname{diag}\left(\begin{array}{c}
w_{1} \frac{\nu\left(\vec{g}_{1}\right) E\left(\vec{g}_{1}\right)}{1-\nu^{2}\left(\vec{g}_{1}\right)} \\
w_{2} \frac{\nu\left(g_{2}\right) E\left(\vec{g}_{2}\right)}{1-\nu^{2}\left(\vec{g}_{2}\right)} \\
\vdots \\
w_{7} \frac{E\left(\nu\left(\vec{g}_{7}\right) \vec{g}_{7}\right)}{1-\nu^{2}\left(\vec{g}_{7}\right)}
\end{array}\right) \quad \text { and } \quad \mathbf{A}_{3}=\operatorname{diag}\left(\begin{array}{c}
w_{1} \frac{E\left(\vec{g}_{1}\right)}{2\left(1+\left(\vec{g}_{1}\right)\right)} \\
w_{2} \frac{E\left(\vec{g}_{2}\right)}{2\left(1+\left(\vec{g}_{2}\right)\right)} \\
\vdots \\
w_{7} \frac{E\left(\vec{g}_{7}\right)}{2\left(1+\nu\left(\vec{g}_{7}\right)\right)}
\end{array}\right) .
$$

This leads to the approximations

$$
\begin{aligned}
\frac{I_{\phi_{1}}}{\operatorname{area}(T)} & =\frac{1}{\operatorname{area}(T)} \iint_{T} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{1}}{\partial x}\left(\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{1}}{\partial y}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right) d A \\
& \approx\left\langle\mathbf{A}_{1} \mathbf{G}_{x} \vec{\phi}_{1}, \mathbf{G}_{x} \vec{u}_{1}\right\rangle+\left\langle\operatorname{diag} \mathbf{A}_{2} \mathbf{G}_{x} \vec{\phi}_{1}, \mathbf{G}_{y} \vec{u}_{2}\right\rangle+\left\langle\mathbf{A}_{3} \mathbf{G}_{y} \vec{\phi}_{1}, \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x} \vec{u}_{2}\right\rangle \\
& =\left\langle\vec{\phi}_{1}, \mathbf{G}_{x}^{T} \mathbf{A}_{1} \mathbf{G}_{x} \vec{u}_{1}\right\rangle+\left\langle\vec{\phi}_{1}, \mathbf{G}_{x}^{T} \mathbf{A}_{2} \mathbf{G}_{y} \vec{u}_{2}\right\rangle+\left\langle\vec{\phi}_{1}, \mathbf{G}_{y}^{T} \mathbf{A}_{3} \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{y}^{T} \mathbf{A}_{3} \mathbf{G}_{x} \vec{u}_{2}\right\rangle \\
\frac{I_{\phi_{1}}}{\operatorname{area}(T)} & =\frac{1}{\operatorname{area}(T)} \iint \frac{E}{T-\nu^{2}}\left(\frac{\partial \phi_{2}}{\partial y}\left(\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{2}}{\partial x}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right) d A \\
& \approx\left\langle\mathbf{A}_{1} \mathbf{G}_{y} \vec{\phi}_{2}, \mathbf{G}_{y} \vec{u}_{2}\right\rangle+\left\langle\mathbf{A}_{2} \mathbf{G}_{y} \vec{\phi}_{2}, \mathbf{G}_{x} \vec{u}_{1}\right\rangle+\left\langle\mathbf{A}_{3} \mathbf{G}_{x} \vec{\phi}_{2}, \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x} \vec{u}_{2}\right\rangle \\
& =\left\langle\vec{\phi}_{2}, \mathbf{G}_{y}^{T} \mathbf{A}_{1} \mathbf{G}_{y} \vec{u}_{2}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{G}_{y}^{T} \mathbf{A}_{2} \mathbf{G}_{x} \vec{u}_{1}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{G}_{x}^{T} \mathbf{A}_{3} \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x}^{T} \mathbf{A}_{3} \mathbf{G}_{x} \vec{u}_{2}\right\rangle .
\end{aligned}
$$

With a block matrix notation write the above in the form

$$
\begin{aligned}
I_{\vec{\phi}}=I_{\phi_{1}}+I_{\phi_{2}} & \approx \operatorname{area}(T)\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{G}_{x}^{T} \mathbf{A}_{1} \mathbf{G}_{x}+\mathbf{G}_{y}^{T} \mathbf{A}_{3} \mathbf{G}_{y} & \mathbf{G}_{x}^{T} \mathbf{A}_{2} \mathbf{G}_{y}+\mathbf{G}_{y}^{T} \mathbf{A}_{3} \mathbf{G}_{x} \\
\mathbf{G}_{y}^{T} \mathbf{A}_{2} \mathbf{G}_{x}+\mathbf{G}_{x}^{T} \mathbf{A}_{3} \mathbf{G}_{y} & \mathbf{G}_{y}^{T} \mathbf{A}_{1} \mathbf{G}_{y}+\mathbf{G}_{x}^{T} \mathbf{A}_{3} \mathbf{G}_{x}
\end{array}\right]\binom{\vec{u}_{1}}{\overrightarrow{u_{2}}}\right\rangle \\
& =: \operatorname{area}(T)\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}}, \mathbf{G}\binom{\vec{u}_{1}}{\vec{u}_{2}}\right\rangle .
\end{aligned}
$$

The symmetric 12×12 matrix $\mathbf{G} \in \mathbb{R}^{12 \times 12}$ is the element stiffness matrix for the triangle T, containing contributions to (81).

8.4.3 The boundary integral

The boundary integral is similar to (47) on page 152, i.e. based on

$$
\int_{-h / 2}^{h / 2} f(x) d x \approx \frac{h}{18}\left(5 f\left(-\frac{\sqrt{3}}{2 \sqrt{5}} h\right)+8 f(0)+5 f\left(\frac{\sqrt{3}}{2 \sqrt{5}} h\right)\right)
$$

If the values of a function f at the two endpoints and the midpoint are denoted by $\left(f_{1}, f_{2}, f_{3}\right)$ use a quadratic interpolation to find the values at the three Gauss integration points, given by

$$
\left(\begin{array}{c}
f\left(\vec{p}_{1}\right) \\
f\left(\vec{p}_{2}\right) \\
f\left(\vec{p}_{3}\right)
\end{array}\right)=\mathbf{M}_{B}\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) \approx\left[\begin{array}{ccc}
+0.68730 & 0.4 & -0.08730 \\
0 & 1 & 0 \\
-0.08730 & 0.4 & +0.68730
\end{array}\right]\left(\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right)
$$

and with the length L of the segment on the edge obtain the approximate integral

$$
\begin{aligned}
\int_{\text {edge }} g_{1} \phi_{1}+g_{2} \phi_{2} d s & \approx \frac{L}{18}\left\langle\mathbf{M}_{B} \vec{\phi}_{1},\left(\begin{array}{l}
5 g_{1}\left(\vec{p}_{1}\right) \\
8 g_{1}\left(\vec{p}_{2}\right) \\
5 g_{1}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+\frac{L}{18}\left\langle\mathbf{M}_{B} \vec{\phi}_{2},\left(\begin{array}{c}
5 g_{2}\left(\vec{p}_{1}\right) \\
8 g_{2}\left(\vec{p}_{2}\right) \\
5 g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle \\
& =\frac{L}{18}\left\langle\vec{\phi}_{1}, \mathbf{M}_{B}^{T}\left(\begin{array}{l}
5 g_{1}\left(\vec{p}_{1}\right) \\
8 g_{1}\left(\vec{p}_{2}\right) \\
5 g_{1}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+\frac{L}{18}\left\langle\vec{\phi}_{2}, \mathbf{M}_{B}^{T}\left(\begin{array}{l}
5 g_{2}\left(\vec{p}_{1}\right) \\
8 g_{2}\left(\vec{p}_{2}\right) \\
5 g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle
\end{aligned}
$$

The integration weights can be combined with the interpolation matrix \mathbf{M}_{B} by

$$
\mathbf{M}_{B C}=\frac{1}{18} \mathbf{M}_{B}^{T}\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 5
\end{array}\right] \approx\left[\begin{array}{ccc}
0.1909 & 0 & -0.0242 \\
0.1111 & 0.4444 & 0.1111 \\
-0.0242 & 0 & 0.1909
\end{array}\right]
$$

This matrix $\mathbf{M}_{B C}$ does not depend on the current edge segment and now use

$$
\int_{\text {edge }} g_{1} \phi_{1}+g_{2} \phi_{2} d s \approx L\left\langle\vec{\phi}_{1}, \mathbf{M}_{B C}\left(\begin{array}{l}
g_{1}\left(\vec{p}_{1}\right) \\
g_{1}\left(\vec{p}_{2}\right) \\
g_{1}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+L\left\langle\vec{\phi}_{2}, \mathbf{M}_{B C}\left(\begin{array}{l}
g_{2}\left(\vec{p}_{1}\right) \\
g_{2}\left(\vec{p}_{2}\right) \\
g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle
$$

The effect of the boundary integral on the global stiffness matrix and the vector is very similar to the approach shown at the end of Section 6.5.8.

8.4.4 Construct a weight matrix W

Use the same approach as for first order elements in Section 8.3.4 to approximate

$$
\iint_{\Omega} \rho(x, y)\left(f_{1}(x, y) \phi_{1}(x, y)+f_{2}(x, y) \phi_{2}(x, y) d A \approx\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{W}_{1} & 0 \\
0 & \mathbf{W}_{2}
\end{array}\right]\binom{\vec{f}_{1}}{\vec{f}_{2}}\right\rangle\right.
$$

where $\vec{\phi}_{i}$ and \vec{f}_{i} are evaluated at the nodes. With the Gauss weights w_{i} and the values $\rho\left(\vec{g}_{i}\right)$ at the Gauss points \vec{g}_{i} construct

$$
\mathbf{W}_{T}=\operatorname{diag}\left(\begin{array}{c}
w_{1} \rho\left(\vec{g}_{1}\right) \\
w_{2} \rho\left(\vec{g}_{2}\right) \\
\vdots \\
w_{7} \rho\left(\vec{g}_{7}\right)
\end{array}\right)=\left[\begin{array}{cccc}
w_{1} \rho\left(\vec{g}_{1}\right) & & & \\
& w_{2} \rho\left(\vec{g}_{2}\right) & & \\
& & \ddots & \\
& & & w_{7} \rho\left(\vec{g}_{7}\right)
\end{array}\right] \in \mathbb{R}^{7 \times 7}
$$

Use the interpolation matrix $\mathbf{M} \in \mathbb{R}^{7 \times 6}$ from equation (41) to interpolate from the six nodes to the seven Gauss points. This leads to

$$
\begin{aligned}
\iint_{T} \rho\left(f_{1} \phi_{1}+f_{2} \phi_{2}\right) d A & \approx\left\langle\mathbf{W}_{T} \mathbf{M} \vec{\phi}_{1}, \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\mathbf{W}_{T} \mathbf{M} \vec{\phi}_{2}, \mathbf{M} \vec{f}_{2}\right\rangle \\
& =\left\langle\vec{\phi}_{1}, \mathbf{M} \mathbf{W}_{T} \mathbf{M} \overrightarrow{f_{1}}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M} \mathbf{W}_{T} \mathbf{M} \vec{f}_{2}\right\rangle \\
& =\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} & 0 \\
0 & \mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M}
\end{array}\right]\binom{\overrightarrow{f_{1}}}{\vec{f}_{2}}\right\rangle
\end{aligned}
$$

Thus the matrix to use is $\mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} \in \mathbb{R}^{6 \times 6}$.

8.5 Construction of third order elements

The methods in this section are a combination of the tools used to construct third order elements for elliptic problems (Section 6.6) and the methods in the previous Section 8.4 to construct second order elements.

8.5.1 Integration of $f_{1} \phi_{1}+f_{2} \phi_{2}$

Use the Gauss weights $\vec{w} \in \mathbb{R}^{7}$ from equation (34) on page 138 for the approximate integration over one triangle T.

- If the values of the functions f_{1} and f_{2} at the seven Gauss points are denoted by the vectors \vec{f}_{1} and $\overrightarrow{f_{2}} \in \mathbb{R}^{7}$, then use the approximation

$$
\begin{aligned}
\iint_{T} f_{1} \phi_{1}+f_{2} \phi_{2} d A & \approx \operatorname{area}(T)\left(\left\langle\mathbf{M} \vec{\phi}_{1}, \operatorname{diag}(\vec{w}) \overrightarrow{f_{1}}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{2}, \operatorname{diag}(\vec{w}) \overrightarrow{f_{2}}\right\rangle\right) \\
& =\operatorname{area}(T)\left(\left\langle\vec{\phi}_{1}, \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \overrightarrow{f_{1}}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \vec{f}_{2}\right\rangle\right) \\
& =\operatorname{area}(T)\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{M}^{T} \operatorname{diag}(\vec{w}) & \mathbf{0} \\
\mathbf{0} & \mathbf{M}^{T} \operatorname{diag}(\vec{w})
\end{array}\right]\binom{\vec{f}_{1}}{\vec{f}_{2}}\right\rangle .
\end{aligned}
$$

$\mathbf{M} \in \mathbb{R}^{7 \times 10}$ is the matrix for interpolation from the nodes to the Gauss points, given in equation (52) on page 155.

- If the values of the functions f_{1} and f_{2} at the nodes are denoted by the vectors $\overrightarrow{f_{1}}$ and $\overrightarrow{f_{2}} \in \mathbb{R}^{10}$, then use the approximation

$$
\begin{aligned}
\iint_{T} f_{1} \phi_{1}+f_{2} \phi_{2} d A & \approx \operatorname{area}(T)\left(\left\langle\mathbf{M} \vec{\phi}_{1}, \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{2}, \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}_{2}\right\rangle\right) \\
& =\operatorname{area}(T)\left(\left\langle\vec{\phi}_{1}, \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M} \vec{f}_{2}\right\rangle\right)
\end{aligned}
$$

Thus find one contribution to (81). Observe that $\mathbf{M}^{T} \operatorname{diag}(\vec{w}) \mathbf{M}$ is a 10×10 matrix, independent on the triangle T.

8.5.2 Integration of the terms involving derivatives of ϕ_{1} and ϕ_{2}

Using the results from Section 6.6 the partial derivatives at the nodes of functions ϕ given at the notes find for the first component $\varphi_{x}=\frac{\partial \varphi}{\partial x}$ of the gradient at the Gauss points

$$
\left(\begin{array}{c}
\varphi_{x}\left(\vec{x}_{1}\right) \\
\varphi_{x}\left(\vec{x}_{2}\right) \\
\vdots \\
\varphi_{x}\left(\vec{x}_{7}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+y_{3}-y_{1}\right) \mathbf{M}_{\xi}^{T}+\left(-y_{2}+y_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}=: \mathbf{G}_{x} \vec{\phi}
$$

and for the second component of the gradient

$$
\left(\begin{array}{c}
\varphi_{y}\left(\vec{x}_{1}\right) \\
\varphi_{y}\left(\vec{x}_{2}\right) \\
\vdots \\
\varphi_{y}\left(\vec{x}_{7}\right)
\end{array}\right)=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-x_{3}+x_{1}\right) \mathbf{M}_{\xi}^{T}+\left(+x_{2}-x_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}=: \mathbf{G}_{y} \vec{\phi}
$$

using the interpolation matrices \mathbf{M}_{ξ} and \mathbf{M}_{ν} in equation (55) for the partial derivatives and the transformation rule (43) for the gradient. The matrices \mathbf{G}_{x} and \mathbf{G}_{y} are of size 7×10 and depend on the actual element, i.e. the triangle T.

Evaluate the coefficients E and ν at the Gauss points \vec{g}_{i} and multiply by the Gauss integration weights w_{i} to obtain the three diagonal matrices

$$
\mathbf{A}_{1}=\operatorname{diag}\left(\begin{array}{c}
w_{1} \frac{E\left(\vec{g}_{1}\right)}{1-\nu^{2}\left(\vec{g}_{1}\right)} \\
w_{2} \frac{E\left(g_{g}\right)}{1-\nu^{2}\left(\vec{g}_{2}\right)} \\
\vdots \\
w_{7} \frac{E\left(\vec{g}_{7}\right)}{1-\nu^{2}\left(\vec{g}_{7}\right)}
\end{array}\right) \quad, \quad \mathbf{A}_{2}=\operatorname{diag}\left(\begin{array}{c}
w_{1} \frac{\nu\left(\vec{g}_{1}\right) E\left(\vec{g}_{1}\right)}{1 \nu^{2}\left(\vec{g}_{1}\right)} \\
w_{2} \frac{\nu\left(\vec{g}_{2}\right) E\left(\bar{g}_{2}\right)}{1-\nu^{2}\left(\vec{g}_{2}\right)} \\
\vdots \\
w_{7} \frac{E\left(\nu\left(\vec{g}_{7}\right) \vec{g}_{7}\right)}{1-\nu^{2}\left(\vec{g}_{7}\right)}
\end{array}\right) \quad \text { and } \quad \mathbf{A}_{3}=\operatorname{diag}\left(\begin{array}{c}
w_{1} \frac{E\left(\vec{g}_{1}\right)}{2\left(1+\nu\left(\vec{g}_{1}\right)\right)} \\
w_{2} \frac{E\left(\vec{g}_{2}\right)}{2\left(1+\nu\left(\vec{g}_{2}\right)\right)} \\
\vdots \\
w_{7} \frac{E\left(\vec{g}_{7}\right)}{2\left(1+\nu\left(\vec{g}_{7}\right)\right)}
\end{array}\right) .
$$

This leads to the approximations

$$
\frac{I_{\phi_{1}}}{\operatorname{area}(T)}=\frac{1}{\operatorname{area}(T)} \iint_{T} \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{1}}{\partial x}\left(\frac{\partial u_{1}}{\partial x}+\nu \frac{\partial u_{2}}{\partial y}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{1}}{\partial y}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right) d A
$$

$$
\begin{aligned}
& \approx\left\langle\mathbf{A}_{1} \mathbf{G}_{x} \vec{\phi}_{1}, \mathbf{G}_{x} \vec{u}_{1}\right\rangle+\left\langle\operatorname{diag} \mathbf{A}_{2} \mathbf{G}_{x} \vec{\phi}_{1}, \mathbf{G}_{y} \vec{u}_{2}\right\rangle+\left\langle\mathbf{A}_{3} \mathbf{G}_{y} \vec{\phi}_{1}, \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x} \vec{u}_{2}\right\rangle \\
& =\left\langle\vec{\phi}_{1}, \mathbf{G}_{x}^{T} \mathbf{A}_{1} \mathbf{G}_{x} \vec{u}_{1}\right\rangle+\left\langle\vec{\phi}_{1}, \mathbf{G}_{x}^{T} \mathbf{A}_{2} \mathbf{G}_{y} \vec{u}_{2}\right\rangle+\left\langle\vec{\phi}_{1}, \mathbf{G}_{y}^{T} \mathbf{A}_{3} \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{y}^{T} \mathbf{A}_{3} \mathbf{G}_{x} \vec{u}_{2}\right\rangle \\
\frac{I_{\phi_{2}}}{\operatorname{area}(T)} & =\frac{1}{\operatorname{area}(T)} \iint \frac{E}{1-\nu^{2}}\left(\frac{\partial \phi_{2}}{\partial y}\left(\frac{\partial u_{2}}{\partial y}+\nu \frac{\partial u_{1}}{\partial x}\right)+\frac{1-\nu}{2} \frac{\partial \phi_{2}}{\partial x}\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial x}\right)\right) d A \\
& \approx\left\langle\mathbf{A}_{1} \mathbf{G}_{y} \vec{\phi}_{2}, \mathbf{G}_{y} \vec{u}_{2}\right\rangle+\left\langle\mathbf{A}_{2} \mathbf{G}_{y} \vec{\phi}_{2}, \mathbf{G}_{x} \vec{u}_{1}\right\rangle+\left\langle\mathbf{A}_{3} \mathbf{G}_{x} \vec{\phi}_{2}, \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x} \vec{u}_{2}\right\rangle \\
& =\left\langle\vec{\phi}_{2}, \mathbf{G}_{y}^{T} \mathbf{A}_{1} \mathbf{G}_{y} \vec{u}_{2}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{G}_{y}^{T} \mathbf{A}_{2} \mathbf{G}_{x} \vec{u}_{1}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{G}_{x}^{T} \mathbf{A}_{3} \mathbf{G}_{y} \vec{u}_{1}+\mathbf{G}_{x}^{T} \mathbf{A}_{3} \mathbf{G}_{x} \vec{u}_{2}\right\rangle .
\end{aligned}
$$

With a block matrix notation write the above in the form

$$
\begin{aligned}
I_{\vec{\phi}}=I_{\phi_{1}}+I_{\phi_{2}} & \approx \operatorname{area}(T)\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{G}_{x}^{T} \mathbf{A}_{1} \mathbf{G}_{x}+\mathbf{G}_{y}^{T} \mathbf{A}_{3} \mathbf{G}_{y} & \mathbf{G}_{x}^{T} \mathbf{A}_{2} \mathbf{G}_{y}+\mathbf{G}_{y}^{T} \mathbf{A}_{3} \mathbf{G}_{x} \\
\mathbf{G}_{y}^{T} \mathbf{A}_{2} \mathbf{G}_{x}+\mathbf{G}_{x}^{T} \mathbf{A}_{3} \mathbf{G}_{y} & \mathbf{G}_{y}^{T} \mathbf{A}_{1} \mathbf{G}_{y}+\mathbf{G}_{x}^{T} \mathbf{A}_{3} \mathbf{G}_{x}
\end{array}\right]\binom{\overrightarrow{u_{1}}}{\overrightarrow{u_{2}}}\right\rangle \\
& =: \operatorname{area}(T)\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}}, \mathbf{G}\binom{\vec{u}_{1}}{\vec{u}_{2}}\right\rangle .
\end{aligned}
$$

The symmetric 20×20 matrix $\mathbf{G} \in \mathbb{R}^{20 \times 20}$ is the element stiffness matrix for the triangle T, containing contributions to (81).

8.5.3 The boundary integral

The boundary integral is similar to (6.6.7) on page 161, i.e. based on

$$
\int_{-h / 2}^{h / 2} f(x) d x \approx \frac{h}{18}\left(5 f\left(-\frac{\sqrt{3}}{2 \sqrt{5}} h\right)+8 f(0)+5 f\left(\frac{\sqrt{3}}{2 \sqrt{5}} h\right)\right)
$$

If the values of a function f at the two endpoints and the two points on the edge are denoted by $\left(f_{-2}, f_{-1}, f_{+1}, f_{+2}\right)$ use a cubic interpolation to find the values at the three Gauss integration points, given by

$$
\left(\begin{array}{c}
u\left(\vec{p}_{1}\right) \\
u\left(\vec{p}_{2}\right) \\
u\left(\vec{p}_{3}\right)
\end{array}\right)=\mathbf{M}_{B}\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right) \approx\left[\begin{array}{cccc}
0.4880 & 0.7479 & -0.2979 & 0.06199 \\
-0.0625 & 0.5625 & 0.5625 & -0.0625 \\
0.06199 & -0.2979 & 0.7479 & 0.4880
\end{array}\right]\left(\begin{array}{c}
f_{-2} \\
f_{-1} \\
f_{+1} \\
f_{+2}
\end{array}\right)
$$

and with the length L of the segment on the edge obtain the approximate integral

$$
\begin{aligned}
\int_{\text {edge }} g_{1} \phi_{1}+g_{2} \phi_{2} d s & \approx \frac{L}{18}\left\langle\mathbf{M}_{B} \vec{\phi}_{1},\left(\begin{array}{c}
5 g_{1}\left(\vec{p}_{1}\right) \\
8 g_{1}\left(\vec{p}_{2}\right) \\
5 g_{1}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+\frac{L}{18}\left\langle\mathbf{M}_{B} \vec{\phi}_{2},\left(\begin{array}{c}
5 g_{2}\left(\vec{p}_{1}\right) \\
8 g_{2}\left(\vec{p}_{2}\right) \\
5 g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle \\
& =\frac{L}{18}\left\langle\vec{\phi}_{1}, \mathbf{M}_{B}^{T}\left(\begin{array}{c}
5 g_{1}\left(\vec{p}_{1}\right) \\
8 g_{1}\left(\vec{p}_{2}\right) \\
5 g_{1}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+\frac{L}{18}\left\langle\vec{\phi}_{2}, \mathbf{M}_{B}^{T}\left(\begin{array}{c}
5 g_{2}\left(\vec{p}_{1}\right) \\
8 g_{2}\left(\vec{p}_{2}\right) \\
5 g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle .
\end{aligned}
$$

The integration weights can be combined with the interpolation matrix \mathbf{M}_{B} by

$$
\mathbf{M}_{B C}=\frac{1}{18} \mathbf{M}_{B}^{T}\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 5
\end{array}\right] \approx\left[\begin{array}{ccc}
0.1356 & -0.0278 & 0.0172 \\
0.2077 & 0.2500 & -0.0827 \\
-0.0827 & 0.2500 & 0.2077 \\
0.0172 & -0.0278 & 0.1356
\end{array}\right]
$$

This matrix $\mathbf{M}_{B C}$ does not depend on the current edge segment and leads to

$$
\int_{\text {edge }} g_{1} \phi_{1}+g_{2} \phi_{2} d s \approx L\left\langle\vec{\phi}_{1}, \mathbf{M}_{B C}\left(\begin{array}{l}
g_{1}\left(\vec{p}_{1}\right) \\
g_{1}\left(\vec{p}_{2}\right) \\
g_{1}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+L\left\langle\vec{\phi}_{2}, \mathbf{M}_{B C}\left(\begin{array}{l}
g_{2}\left(\vec{p}_{1}\right) \\
g_{2}\left(\vec{p}_{2}\right) \\
g_{2}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle
$$

The effect of the boundary integral on the global stiffness matrix and the vector is very similar to the approach shown at the end of Section 6.6.7.

8.5.4 Construct a weight matrix W

Use the same approach as for first or second order elements in Sections 8.3.4 and 8.4.4. Use the interpolation matrix $\mathbf{M} \in \mathbb{R}^{7 \times 10}$ from equation (52) to interpolate from the ten nodes to the seven Gauss points. This leads to

$$
\begin{aligned}
\iint_{T} \rho\left(f_{1} \phi_{1}+f_{2} \phi_{2}\right) d A & \approx\left\langle\mathbf{W}_{T} \mathbf{M} \vec{\phi}_{1}, \mathbf{M} \vec{f}_{1}\right\rangle+\left\langle\mathbf{W}_{T} \mathbf{M} \vec{\phi}_{2}, \mathbf{M} \vec{f}_{2}\right\rangle \\
& =\left\langle\vec{\phi}_{1}, \mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} \overrightarrow{f_{1}}\right\rangle+\left\langle\vec{\phi}_{2}, \mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} \overrightarrow{f_{2}}\right\rangle \\
& =\left\langle\binom{\vec{\phi}_{1}}{\vec{\phi}_{2}},\left[\begin{array}{cc}
\mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} & 0 \\
0 & \mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M}
\end{array}\right]\binom{\overrightarrow{f_{1}}}{\overrightarrow{f_{2}}}\right\rangle
\end{aligned}
$$

Thus the matrix to use is $\mathbf{M}^{T} \mathbf{W}_{T} \mathbf{M} \in \mathbb{R}^{10 \times 10}$.

8.6 The plane strain problem

For a plane strain problem it is assumed that there are no strains in z-direction, i.e.

$$
\varepsilon_{x z}=\varepsilon_{y z}=\varepsilon_{z}=0
$$

With the modified material parameters in equation (27) $\nu^{\star}=\frac{\nu}{1-\nu}$ and $E^{\star}=\frac{E}{1-\nu^{2}}$ this leads to a simplification of Hooke's law.

$$
\begin{aligned}
\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right) & =\frac{E}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & 1-2 \nu
\end{array}\right]\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right) \\
& =\frac{E^{\star}}{\left(1-\nu^{\star}\right)\left(1+\nu^{\star}\right)}\left[\begin{array}{ccc}
1 & \nu^{\star} & 0 \\
\nu^{\star} & 1 & 0 \\
0 & 0 & 1-\nu^{\star}
\end{array}\right]\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right) \\
\sigma_{z} & =\frac{E \nu\left(\varepsilon_{x x}+\varepsilon_{y y}\right)}{(1+\nu)(1-2 \nu)}
\end{aligned}
$$

This is very similar to Hooke's law (20) for the plane stress situation, but with E^{\star} and ν^{\star} instead of E and ν. The energy density is in this case given by

$$
\begin{align*}
W_{\text {strain }} & =\frac{1}{2} \frac{E}{(1+\nu)(1-2 \nu)}\left\langle\left[\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & 2(1-2 \nu)
\end{array}\right]\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right),\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right)\right\rangle \\
& =\frac{E(1-\nu)}{2(1+\nu)(1-2 \nu)}\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \frac{\nu}{1-\nu} \varepsilon_{x x} \varepsilon_{y y}+2 \frac{1-2 \nu}{1-\nu} \varepsilon_{x y}^{2}\right) \\
& =\frac{E^{\star}}{2\left(1-\left(\nu^{\star}\right)^{2}\right)}\left(\varepsilon_{x x}^{2}+\varepsilon_{y y}^{2}+2 \nu^{\star} \varepsilon_{x x} \varepsilon_{y y}+2\left(1-\nu^{\star}\right) \varepsilon_{x y}^{2}\right) \tag{83}
\end{align*}
$$

This is very similar to the elastic energy density (21) for plane stress problems.
As a consequence of the similarity of the plane strain and plane stress problem there is no need for extensive new codes for plane strain problems. It is sufficient to write a wrapper to modify the material parameters.

$$
E \rightarrow E^{\star}=\frac{E}{1-\nu^{2}} \geq E \quad \text { and } \quad \nu \rightarrow \nu^{\star}=\frac{\nu}{1-\nu} \geq \nu
$$

8.7 Elasticity for axially symmetric setups

For functions $u_{r}(r, z)$ and $u_{z}(r, z)$ examine displacements of the form

$$
\left(\begin{array}{c}
u_{1}(x, y, z) \\
u_{2}(x, y, z) \\
u_{3}(x, y, z)
\end{array}\right)=\left(\begin{array}{c}
u_{r}(r, z) \cos \varphi \\
u_{r}(r, z) \sin \varphi \\
u_{z}(r, z)
\end{array}\right) .
$$

and the total energy to be minimized is given by expression (29) on page 19.

$$
\begin{aligned}
U(\vec{u})= & U_{\text {elast }}+U_{\text {Vol }}+U_{\text {Surf }} \\
= & \iint_{\Omega} \frac{2 \pi r E}{2(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\varepsilon_{r r}^{2}+\varepsilon_{z z}^{2}+\frac{1}{r^{2}} u_{r}^{2}\right)+2 \nu\left(\varepsilon_{r r} \varepsilon_{z z}+\frac{1}{r} u_{r}\left(\varepsilon_{r r}+\varepsilon_{z z}\right)\right)\right) d A+ \\
& \quad+\iint_{\Omega} \frac{2 \pi r E}{1+\nu} \varepsilon_{r z}^{2} d A-\iint_{\Omega} 2 \pi r \vec{f} \cdot \vec{u} d A-\int_{\Gamma_{2}} 2 \pi r \vec{g}_{N} \cdot \vec{u} d s .
\end{aligned}
$$

Use the strains

$$
\left(\begin{array}{c}
\varepsilon_{r r} \\
\varepsilon_{\phi \phi} \\
\varepsilon_{z z} \\
\varepsilon_{r z}
\end{array}\right)=\left(\begin{array}{c}
\frac{\partial u_{r}}{\partial r} \\
\frac{1}{r} u_{r} \\
\frac{\partial u_{z}}{\partial z} \\
\frac{1}{2}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right)
\end{array}\right)
$$

to rewrite the above with the displacement functions u_{r} and u_{z} in the form

$$
\begin{aligned}
\frac{U(\vec{u})}{2 \pi}= & \iint_{\Omega} \frac{r E}{2(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\left(\frac{\partial u_{r}}{\partial r}\right)^{2}+\left(\frac{\partial u_{z}}{\partial z}\right)^{2}+\frac{1}{r^{2}} u_{r}^{2}\right)+\right. \\
& \left.+2 \nu\left(\left(\frac{\partial u_{r}}{\partial r}\right)\left(\frac{\partial u_{z}}{\partial z}\right)+\frac{1}{r} u_{r}\left(\frac{\partial u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}\right)\right)\right) d A+ \\
& +\iint_{\Omega} \frac{r E}{1+\nu} \frac{1}{4}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right)^{2} d A- \\
& -\iint_{\Omega} r\left(f_{r} u_{r}+f_{z} u_{z}\right) d A-\int_{\Gamma_{2}} r\left(g_{N r} u_{r}+g_{N z} u_{z}\right) d s .
\end{aligned}
$$

Expanding and ignoring quadratic terms of the perturbation $\vec{\phi}$ leads to

$$
\begin{aligned}
\frac{U(\vec{u}+\vec{\phi})}{2 \pi} \approx & \frac{U(\vec{u})}{2 \pi}+\iint_{\Omega} \frac{r E}{(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\frac{\partial u_{r}}{\partial r} \frac{\partial \phi_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z} \frac{\partial \phi_{z}}{\partial z}+\frac{1}{r^{2}} u_{r} \phi_{r}\right)+\right. \\
& \left.+\nu\left(\left(\frac{\partial u_{r}}{\partial r}\right)\left(\frac{\partial \phi_{z}}{\partial z}\right)+\left(\frac{\partial \phi_{r}}{\partial r}\right)\left(\frac{\partial u_{z}}{\partial z}\right)+\frac{1}{r} u_{r}\left(\frac{\partial \phi_{r}}{\partial r}+\frac{\partial \phi_{z}}{\partial z}\right)+\frac{1}{r} \phi_{r}\left(\frac{\partial u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}\right)\right)\right) d A+ \\
& +\iint_{\Omega} \frac{r E}{1+\nu} \frac{1}{2}\left(\frac{\partial u_{r}}{\partial z} \frac{\partial \phi_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r} \frac{\partial \phi_{z}}{\partial r}+\frac{\partial u_{r}}{\partial z} \frac{\partial \phi_{z}}{\partial r}+\frac{\partial \phi_{r}}{\partial z} \frac{\partial u_{z}}{\partial r}\right) d A- \\
& -\iint_{\Omega} r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right) d A-\int_{\Gamma_{2}} r\left(g_{N r} \phi_{r}+g_{N z} \phi_{z}\right) d s .
\end{aligned}
$$

These integrals can be separated into contributions with ϕ_{r}, ϕ_{z}, f and g_{N}.

$$
\begin{align*}
\frac{U(\vec{u}+\vec{\phi})}{2 \pi} & \approx \frac{U(\vec{u})}{2 \pi}+I_{\phi_{r}}+I_{\phi_{z}}+I_{f}+I_{g} \tag{84}\\
I_{\phi_{r}} & =\iint_{\Omega} \frac{r E}{(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\frac{\partial u_{r}}{\partial r} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r^{2}} u_{r} \phi_{r}\right)+\right. \tag{85}
\end{align*}
$$

$$
\begin{align*}
& \left.+\nu\left(\frac{\partial u_{z}}{\partial z} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r} u_{r} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r} \phi_{r}\left(\frac{\partial u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}\right)\right)\right)+ \\
& +\frac{r E}{2(1+\nu)}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) \frac{\partial \phi_{r}}{\partial z} d A \\
I_{\phi_{z}}= & \iint_{\Omega} \frac{r E}{(1+\nu)(1-2 \nu)}\left((1-\nu) \frac{\partial u_{z}}{\partial z} \frac{\partial \phi_{z}}{\partial z}+\nu\left(\frac{\partial u_{r}}{\partial r} \frac{\partial \phi_{z}}{\partial z}+\frac{1}{r} u_{r} \frac{\partial \phi_{z}}{\partial z}\right)\right)+ \tag{86}\\
& +\frac{r E}{2(1+\nu)}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) \frac{\partial \phi_{z}}{\partial r} d A \\
I_{f}= & -\iint_{\Omega} r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right) d A \tag{87}\\
I_{g}= & -\int_{\Gamma_{2}} r\left(g_{N r} \phi_{r}+g_{N z} \phi_{z}\right) d s \tag{88}
\end{align*}
$$

Using these integrals derive the FEM algorithm for elements of order 1, 2 and 3.

8.8 Construction of first order elements

This is similar to the computations in Section 8.3, starting in page 186. In this section the element stiffness matrix is constructed. Then use the procedure in Section 6.4 (page 138) to determine the global stiffness matrix.

8.8.1 Integration of $r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right)$

Evaluate the radius r at the three Gauss points of the triangle T, leading to the diagonal matrix $\mathbf{R}=\operatorname{diag}\left(\left[r_{1}, r_{2}, r_{3}\right]\right)$ and use the interpolation matrix from the corners to the Gauss points

$$
\mathbf{M}=\frac{1}{6}\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]
$$

- If the values of the functions f_{r} and f_{z} at the Gauss points are denoted by the vectors \vec{f}_{r} and \vec{f}_{z}, then use the approximation

$$
\begin{aligned}
\iint_{T} r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right) d A & \approx \frac{\operatorname{area}(T)}{3}\left(\left\langle\mathbf{M} \vec{\phi}_{r}, \mathbf{R} \vec{f}_{r}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{z}, \mathbf{R} \vec{f}_{z}\right\rangle\right) \\
& =\frac{\operatorname{area}(T)}{3}\left(\left\langle\vec{\phi}_{r}, \mathbf{M}^{T} \mathbf{R} \vec{f}_{r}\right\rangle+\left\langle\vec{\phi}_{z}, \mathbf{M}^{T} \mathbf{R} \vec{f}_{z}\right\rangle\right)
\end{aligned}
$$

- If the values of the functions f_{r} and f_{z} at the nodes are denoted by the vectors \vec{f}_{r} and \vec{f}_{z}, then use the approximation

$$
\begin{aligned}
\iint_{T} r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right) d A & \approx \frac{\operatorname{area}(T)}{3}\left(\left\langle\mathbf{M} \vec{\phi}_{r}, \mathbf{R M} \vec{f}_{r}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{z}, \mathbf{R M} \vec{f}_{z}\right\rangle\right) \\
& =\frac{\operatorname{area}(T)}{3}\left(\left\langle\vec{\phi}_{r}, \mathbf{M}^{T} \mathbf{R M} \vec{f}_{r}\right\rangle+\left\langle\vec{\phi}_{z}, \mathbf{M}^{T} \mathbf{R M} \vec{f}_{z}\right\rangle\right)
\end{aligned}
$$

With the above the contributions in (87) for each element stiffness matrix can be determined.
8.8.2 Integration of the terms involving derivatives of ϕ_{z} and ϕ_{z}

For linear elements the gradient of the functions u_{i} and ϕ_{i} are constant and using equation (37) given by

$$
\nabla u=\frac{-1}{2 \operatorname{area}(T)}\left[\begin{array}{lll}
\left(z_{3}-z_{2}\right) & \left(z_{1}-z_{3}\right) & \left(z_{2}-z_{1}\right) \\
\left(r_{2}-r_{3}\right) & \left(r_{3}-r_{1}\right) & \left(r_{1}-r_{2}\right)
\end{array}\right] \cdot \vec{u}=\left[\begin{array}{c}
\mathbf{G}_{r} \\
\mathbf{G}_{z}
\end{array}\right] \vec{u}
$$

Evaluate the coefficients E and ν at the Gauss points \vec{g}_{i} and define the average values a_{j}, vector \vec{a}_{4} and the diagonal matrix \mathbf{A}_{2}. Since the derivatives of order one of the displacements are piecewise constant, some of the expressions require less computational effort to determine.

$$
\begin{aligned}
a_{1} & =\frac{\operatorname{area}(T)}{3} \sum_{i=1}^{3} \frac{r\left(\vec{g}_{i}\right) E\left(\vec{g}_{i}\right)\left(1-\nu\left(\vec{g}_{i}\right)\right)}{\left(1+\nu\left(\vec{g}_{i}\right)\right)\left(1-2 \nu\left(\vec{g}_{i}\right)\right)} \\
\mathbf{A}_{2} & =\frac{\operatorname{area}(T)}{3} \operatorname{diag}\left(\frac{E\left(\vec{g}_{i}\right)\left(1-\nu\left(\vec{g}_{i}\right)\right)}{r\left(\vec{g}_{i}\right)\left(1+\nu\left(\vec{g}_{i}\right)\right)\left(1-2 \nu\left(\vec{g}_{i}\right)\right)}\right) \\
a_{3} & =\frac{\operatorname{area}(T)}{3} \sum_{i=1}^{3} \frac{r\left(\vec{g}_{i}\right) E\left(\vec{g}_{i}\right) \nu\left(\vec{g}_{i}\right)}{\left(1+\nu\left(\vec{g}_{i}\right)\right)\left(1-2 \nu\left(\vec{g}_{i}\right)\right)} \\
\left(\vec{a}_{4}\right)_{i} & =\frac{\operatorname{area}(T)}{3} \frac{E\left(\vec{g}_{i}\right) \nu\left(\vec{g}_{i}\right)}{\left(1+\nu\left(\vec{g}_{i}\right)\right)\left(1-2 \nu\left(\vec{g}_{i}\right)\right)} \\
a_{5} & =\frac{\operatorname{area}(T)}{3} \sum_{i=1}^{3} \frac{r\left(\vec{g}_{i}\right) E\left(\vec{g}_{i}\right)}{2\left(1+\nu\left(\vec{g}_{i}\right)\right)}
\end{aligned}
$$

This leads to the approximate integrals

$$
\begin{aligned}
I_{\phi_{r}}= & \iint_{T} \frac{r E}{(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\frac{\partial u_{r}}{\partial r} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r^{2}} u_{r} \phi_{r}\right)+\right. \\
& \left.+\nu\left(\frac{\partial u_{z}}{\partial z} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r} u_{r} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r} \phi_{r}\left(\frac{\partial u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}\right)\right)\right)+ \\
& \quad+\frac{r E}{2(1+\nu)}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) \frac{\partial \phi_{r}}{\partial z} d A \\
\approx & a_{1}\left\langle\mathbf{G}_{r} \vec{\phi}_{r}, \mathbf{G}_{r} \vec{u}_{r}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{r}, \mathbf{A}_{2} \mathbf{M} \vec{u}_{r}\right\rangle+a_{3}\left\langle\mathbf{G}_{r} \vec{\phi}_{r}, \mathbf{G}_{z} \vec{u}_{z}\right\rangle+ \\
& +\left\langle\vec{a}_{4} \mathbf{G}_{r} \vec{\phi}_{r}, \mathbf{M} \vec{u}_{r}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{r}, \vec{a}_{4}\left(\mathbf{G}_{r} \vec{u}_{r}+\mathbf{G}_{z} \vec{u}_{z}\right)\right\rangle+a_{5}\left\langle\mathbf{G}_{z} \vec{\phi}_{r},\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right)\right\rangle \\
= & a_{1}\left\langle\vec{\phi}_{r}, \mathbf{G}_{r}^{T} \mathbf{G}_{r} \vec{u}_{r}\right\rangle+\left\langle\vec{\phi}_{r}, \mathbf{M}^{T} \mathbf{A}_{2} \mathbf{M} \vec{u}_{r}\right\rangle+a_{3}\left\langle\vec{\phi}_{r}, \mathbf{G}_{r}^{T} \mathbf{G}_{z} \vec{u}_{z}\right\rangle+ \\
& +\left\langle\vec{\phi}_{r},\left(\vec{a}_{4} \mathbf{G}_{r}\right)^{T} \mathbf{M} \vec{u}_{r}\right\rangle+\left\langle\vec{\phi}_{r}, \mathbf{M}^{T} \vec{a}_{4}\left(\mathbf{G}_{r} \vec{u}_{r}+\mathbf{G}_{z} \vec{u}_{z}\right)\right\rangle+a_{5}\left\langle\vec{\phi}_{r}, \mathbf{G}_{z}^{T}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right)\right\rangle \\
= & \left\langle a_{1} \mathbf{G}_{r}^{T} \mathbf{G}_{r} \vec{u}_{r}+\mathbf{M}^{T} \mathbf{A}_{2} \mathbf{M} \vec{u}_{r}+a_{3} \mathbf{G}_{r}^{T} \mathbf{G}_{z} \vec{u}_{z}+\left(\vec{a}_{4} \mathbf{G}_{r}\right)^{T} \mathbf{M} \vec{u}_{r}, \vec{\phi}_{r}\right\rangle+ \\
& +\left\langle\mathbf{M}^{T} \vec{a}_{4}\left(\mathbf{G}_{r} \vec{u}_{r}+\mathbf{G}_{z} \vec{u}_{z}\right)+a_{5} \mathbf{G}_{z}^{T}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right), \vec{\phi}_{r}\right\rangle \\
= & \left\langle\left(a_{1} \mathbf{G}_{r}^{T} \mathbf{G}_{r}+\mathbf{M}^{T} \mathbf{A}_{2} \mathbf{M}+\left(\vec{a}_{4} \mathbf{G}_{r}\right)^{T} \mathbf{M}+\mathbf{M}^{T} \vec{a}_{4} \mathbf{G}_{r}+a_{5} \mathbf{G}_{z}^{T} \mathbf{G}_{z}\right) \vec{u}_{r}, \vec{\phi}_{r}\right\rangle \\
& +\left\langle\left(a_{3} \mathbf{G}_{r}^{T} \mathbf{G}_{z}+\mathbf{M}^{T} \vec{a}_{4} \mathbf{G}{ }_{z}+a_{5} \mathbf{G}_{z}^{T} \mathbf{G}_{r}\right) \vec{u}_{z}, \vec{\phi}_{r}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
I_{\phi_{z}}= & \iint_{T} \frac{r E}{(1+\nu)(1-2 \nu)}\left((1-\nu) \frac{\partial u_{z}}{\partial z} \frac{\partial \phi_{z}}{\partial z}+\nu\left(\frac{\partial u_{r}}{\partial r} \frac{\partial \phi_{z}}{\partial z}+\frac{1}{r} u_{r} \frac{\partial \phi_{z}}{\partial z}\right)\right)+ \\
& \quad+\frac{r E}{2(1+\nu)}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) \frac{\partial \phi_{z}}{\partial r} d A \\
\approx & a_{1}\left\langle\mathbf{G}_{z} \vec{\phi}_{z}, \mathbf{G}_{z} \vec{u}_{z}\right\rangle+a_{3}\left\langle\mathbf{G}_{z} \vec{\phi}_{z}, \mathbf{G}_{r} \vec{u}_{r}\right\rangle+\left\langle\vec{a}_{4} \mathbf{G}_{z} \vec{\phi}_{z}, \mathbf{M} \vec{u}_{r}\right\rangle+a_{5}\left\langle\mathbf{G}_{r} \vec{\phi}_{z},\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right)\right\rangle \\
= & a_{1}\left\langle\vec{\phi}_{z}, \mathbf{G}_{z}^{T} \mathbf{G}_{z} \vec{u}_{z}\right\rangle+a_{3}\left\langle\vec{\phi}_{z}, \mathbf{G}_{z}^{T} \mathbf{G}_{r} \vec{u}_{r}\right\rangle+\left\langle\vec{\phi}_{z},\left(\vec{a}_{4} \mathbf{G}_{z}\right)^{T} \mathbf{M} \vec{u}_{r}\right\rangle+a_{5}\left\langle\vec{\phi}_{z}, \mathbf{G}_{r}^{T}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right)\right\rangle \\
= & \left\langle a_{1} \mathbf{G}_{z}^{T} \mathbf{G}_{z} \vec{u}_{z}+a_{3} \mathbf{G}_{z}^{T} \mathbf{G}_{r} \vec{u}_{r}+\left(\vec{a}_{4} \mathbf{G}_{z}\right)^{T} \mathbf{M} \vec{u}_{r}+a_{5} \mathbf{G}_{r}^{T}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right), \vec{\phi}_{z}\right\rangle \\
= & \left\langle\left(a_{3} \mathbf{G}_{z}^{T} \mathbf{G}_{r}+\left(\vec{a}_{4} \mathbf{G}_{z}\right)^{T} \mathbf{M}+a_{5} \mathbf{G}_{r}^{T} \mathbf{G}_{z}\right) \vec{u}_{r}, \vec{\phi}_{z}\right\rangle+\left\langle\left(a_{1} \mathbf{G}_{z}^{T} \mathbf{G}_{z}+a_{5} \mathbf{G}_{r}^{T} \mathbf{G}_{r}\right) \vec{u}_{z}, \vec{\phi}_{z}\right\rangle
\end{aligned}
$$

All of the above contributions are of the form $\left\langle\mathbf{A}_{r} \vec{u}_{r, z}, \vec{\phi}_{r}\right\rangle$ or $\left\langle\mathbf{A}_{z} \vec{u}_{r, z}, \vec{\phi}_{z}\right\rangle$ and thus contributions to the element stiffness matrix $\mathbf{A} \in \mathbb{M}^{6 \times 6}$, where $\mathbf{A}_{r, z} \in \mathbb{M}^{3 \times 3}$. For sake of completeness here the 6×6 element stiffness matrix.

$$
\mathbf{A}=\left[\begin{array}{cc}
a_{1} \mathbf{G}_{r}^{T} \mathbf{G}_{r}+\mathbf{M}^{T} \mathbf{A}_{2} \mathbf{M}+\left(\vec{a}_{4} \mathbf{G}_{r}\right)^{T} \mathbf{M}+\mathbf{M}^{T} \vec{a}_{4} \mathbf{G}_{r}+a_{5} \mathbf{G}_{z}^{T} \mathbf{G}_{z} & a_{3} \mathbf{G}_{r}^{T} \mathbf{G}_{z}+\mathbf{M}^{T} \vec{a}_{4} \mathbf{G}_{z}+a_{5} \mathbf{G}_{z}^{T} \mathbf{G}_{r} \\
a_{3} \mathbf{G}_{z}^{T} \mathbf{G}_{r}+\left(\vec{a}_{4} \mathbf{G}_{z}\right)^{T} \mathbf{M}+a_{5} \mathbf{G}_{r}^{T} \mathbf{G}_{z} & a_{1} \mathbf{G}_{z}^{T} \mathbf{G}_{z}+a_{5} \mathbf{G}_{r}^{T} \mathbf{G}_{r}
\end{array}\right]
$$

8.8.3 The boundary integral

The boundary integral is similar to (38) on page 143 . With $\alpha=\frac{1-1 / \sqrt{3}}{2}$ use the symmetric interpolation matrix from nodes to Gauss points

$$
\mathbf{M}_{b}=\left[\begin{array}{cc}
1-\alpha & \alpha \\
\alpha & 1-\alpha
\end{array}\right]=\mathbf{M}_{b}^{T}
$$

to find the two Gauss points \vec{p}_{1} and \vec{p}_{2} and to evaluate the radius r at the Gauss points, leading to the diagonal matrix $\mathbf{R}=\operatorname{diag}\left(\left[r\left(\vec{p}_{1}\right), r\left(\vec{p}_{2}\right)\right]\right)$. Then use the length L of the edge segment for the approximate integral

$$
\begin{aligned}
\int_{\text {edge }} r\left(g_{N r} \phi_{r}+g_{N z} \phi_{z}\right) d s & \approx \frac{L}{2}\left\langle\mathbf{M}_{b} \vec{\phi}_{r}, \mathbf{R} \vec{g}_{N r}\right\rangle+\frac{L}{2}\left\langle\mathbf{M}_{b} \vec{\phi}_{z}, \mathbf{R} \vec{g}_{N z}\right\rangle \\
& =\frac{L}{2}\left\langle\vec{\phi}_{r}, \mathbf{M}_{b}, \mathbf{R} \vec{g}_{N r}\right\rangle+\frac{L}{2}\left\langle\vec{\phi}_{z}, \mathbf{M}_{b} \mathbf{R} \vec{g}_{N z}\right\rangle
\end{aligned}
$$

where the functions $g_{N r}$ and $g_{N z}$ are evaluated at the Gauss points.

8.9 Construction of second order elements

To construct elements of order 2 combine procedures from Section 8.4 for second order elements for plane stress problems and the previous section 8.8 where first order elements are generated for axisymmetric problems.

8.9.1 Integration of $r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right)$

Use the Gauss weights $\vec{w} \in \mathbb{R}^{7}$ from equation (34) on page 138 for the approximate integration over one triangle T and the vector $\vec{r}=\left(r_{1}, r_{2}, \ldots, r_{7}\right)^{T}$ of the radii at the Gauss points. With these construct the diagonal matrix

$$
\mathbf{R W}=\operatorname{diag}\left(\left[r_{1} w_{1}, r_{2} w_{2}, \ldots, r_{7} w_{7}\right]\right) \in \mathbb{M}^{7 \times 7}
$$

- If the values of the functions f_{r} and f_{z} at the seven Gauss points are denoted by the vectors \vec{f}_{r} and $\vec{f}_{z} \in \mathbb{R}^{7}$, then use the approximation

$$
\begin{aligned}
\iint_{T} r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right) d A & \approx \operatorname{area}(T)\left(\left\langle\mathbf{M} \vec{\phi}_{r}, \operatorname{diag}(\vec{w}) \vec{f}_{r}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{z}, \mathbf{R W} \vec{f}_{z}\right\rangle\right) \\
& =\operatorname{area}(T)\left(\left\langle\vec{\phi}_{r}, \mathbf{M}^{T} \mathbf{R W} \vec{f}_{r}\right\rangle+\left\langle\vec{\phi}_{z}, \mathbf{M}^{T} \mathbf{R W} \vec{f}_{z}\right\rangle\right) \\
& =\operatorname{area}(T)\left\langle\binom{\vec{\phi}_{r}}{\vec{\phi}_{z}},\left[\begin{array}{cc}
\mathbf{M}^{T} \mathbf{R W} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}^{T} \mathbf{R W}
\end{array}\right]\binom{\vec{f}_{r}}{\vec{f}_{z}}\right\rangle .
\end{aligned}
$$

$\mathbf{M} \in \mathbb{R}^{7 \times 6}$ is the matrix for interpolation from the nodes to the Gauss points, given in equation (41) on page 146.

- If the values of the functions f_{r} and f_{z} at the nodes are denoted by the vectors \vec{f}_{r} and $\vec{f}_{r} \in \mathbb{R}^{6}$, then use the approximation

$$
\begin{aligned}
\iint_{T} r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right) d A & \approx \operatorname{area}(T)\left(\left\langle\mathbf{M} \vec{\phi}_{r}, \mathbf{R W} \mathbf{M} \vec{f}_{r}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{z}, \mathbf{R W} \mathbf{M} \vec{f}_{z}\right\rangle\right) \\
& =\operatorname{area}(T)\left(\left\langle\vec{\phi}_{r}, \mathbf{M}^{T} \mathbf{R W} \mathbf{M} \vec{f}_{r}\right\rangle+\left\langle\vec{\phi}_{z}, \mathbf{M}^{T} \mathbf{R W} \mathbf{M} \vec{f}_{z}\right\rangle\right) \\
& =\operatorname{area}(T)\left\langle\binom{\vec{\phi}_{r}}{\vec{\phi}_{z}},\left[\begin{array}{cc}
\mathbf{M}^{T} \mathbf{R W} \mathbf{M} & \mathbf{0} \\
\mathbf{0} & \mathbf{M}^{T} \mathbf{R W} \mathbf{M}
\end{array}\right]\binom{\vec{f}_{r}}{\vec{f}_{z}}\right\rangle .
\end{aligned}
$$

With the above the contributions in (87) for each element stiffness matrix can be determined. Observe that $\mathbf{M}^{T} \mathbf{R W} \mathbf{M}$ is a 6×6 matrix, independent on the triangle T.

8.9.2 Integration of the terms involving derivatives of ϕ_{r} and ϕ_{z}

Using the results from Section 6.5 the partial derivatives at the nodes of functions ϕ given at the notes find for the first component of the gradient at the Gauss points

$$
\frac{\partial}{\partial r} \vec{\phi}=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(+z_{3}-z_{1}\right) \mathbf{M}_{\xi}^{T}+\left(-z_{2}+z_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}=: \mathbf{G}_{r} \vec{\phi}
$$

and for the second component of the gradient

$$
\frac{\partial}{\partial z} \vec{\phi}=\frac{1}{\operatorname{det}(\mathbf{T})}\left[\left(-r_{3}+r_{1}\right) \mathbf{M}_{\xi}^{T}+\left(+r_{2}-r_{1}\right) \mathbf{M}_{\nu}^{T}\right] \cdot \vec{\phi}=: \mathbf{G}_{z} \vec{\phi}
$$

Observe that the matrices \mathbf{G}_{r} and \mathbf{G}_{z} depend on the triangle T. Evaluate the coefficients E and ν at the Gauss points \vec{g}_{i} and define diagonal matrices \mathbf{A}_{j}.

$$
\begin{aligned}
& \mathbf{A}_{1}=\operatorname{area}(T) \operatorname{diag}\left(\frac{w_{i} r\left(\vec{g}_{i}\right) E\left(\vec{g}_{i}\right)\left(1-\nu\left(\vec{g}_{i}\right)\right)}{\left(1+\nu\left(\vec{g}_{i}\right)\right)\left(1-2 \nu\left(\vec{g}_{i}\right)\right)}\right) \\
& \mathbf{A}_{2}=\operatorname{area}(T) \operatorname{diag}\left(\frac{w_{i} E\left(\vec{g}_{i}\right)\left(1-\nu\left(\vec{g}_{i}\right)\right)}{r\left(\vec{g}_{i}\right)\left(1+\nu\left(\vec{g}_{i}\right)\right)\left(1-2 \nu\left(\vec{g}_{i}\right)\right)}\right) \\
& \mathbf{A}_{3}=\operatorname{area}(T) \operatorname{diag}\left(\frac{w_{i} r\left(\vec{g}_{i}\right) E\left(\vec{g}_{i}\right) \nu\left(\vec{g}_{i}\right)}{\left(1+\nu\left(\vec{g}_{i}\right)\right)\left(1-2 \nu\left(\vec{g}_{i}\right)\right)}\right) \\
& \mathbf{A}_{4}=\operatorname{area}(T) \operatorname{diag}\left(\frac{w_{i} E\left(\vec{g}_{i}\right) \nu\left(\vec{g}_{i}\right)}{\left(1+\nu\left(\vec{g}_{i}\right)\right)\left(1-2 \nu\left(\vec{g}_{i}\right)\right)}\right) \\
& \mathbf{A}_{5}=\operatorname{area}(T) \operatorname{diag}\left(\frac{w_{i} r\left(\vec{g}_{i}\right) E\left(\vec{g}_{i}\right)}{2\left(1+\nu\left(\vec{g}_{i}\right)\right)}\right)
\end{aligned}
$$

This leads to the approximate integrals

$$
\begin{aligned}
I_{\phi_{r}}= & \iint_{T} \frac{r E}{(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\frac{\partial u_{r}}{\partial r} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r^{2}} u_{r} \phi_{r}\right)+\right. \\
& \left.+\nu\left(\frac{\partial u_{z}}{\partial z} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r} u_{r} \frac{\partial \phi_{r}}{\partial r}+\frac{1}{r} \phi_{r}\left(\frac{\partial u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}\right)\right)\right)+ \\
& +\frac{r E}{2(1+\nu)}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) \frac{\partial \phi_{r}}{\partial z} d A \\
\approx & \left\langle\mathbf{G}_{r} \vec{\phi}_{r}, \mathbf{A}_{1} \mathbf{G}_{r} \vec{u}_{r}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{r}, \mathbf{A}_{2} \mathbf{M} \vec{u}_{r}\right\rangle+\left\langle\mathbf{G}_{r} \vec{\phi}_{r}, \mathbf{A}_{3} \mathbf{G}_{z} \vec{u}_{z}\right\rangle+ \\
& +\left\langle\mathbf{G}_{r} \vec{\phi}_{r}, \mathbf{A}_{4} \mathbf{M} \vec{u}_{r}\right\rangle+\left\langle\mathbf{M} \vec{\phi}_{r}, \mathbf{A}_{4}\left(\mathbf{G}_{r} \vec{u}_{r}+\mathbf{G}_{z} \vec{u}_{z}\right)\right\rangle+\left\langle\mathbf{G}_{z} \vec{\phi}_{r}, \mathbf{A}_{5}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right)\right\rangle \\
= & \left\langle\vec{\phi}_{r}, \mathbf{G}_{r}^{T} \mathbf{A}_{1} \mathbf{G}_{r} \vec{u}_{r}\right\rangle+\left\langle\vec{\phi}_{r}, \mathbf{M}^{T} \mathbf{A}_{2} \mathbf{M} \vec{u}_{r}\right\rangle+\left\langle\vec{\phi}_{r}, \mathbf{G}_{r}^{T} \mathbf{A}_{3} \mathbf{G}_{z} \vec{u}_{z}\right\rangle+ \\
& +\left\langle\vec{\phi}_{r}, \mathbf{G}_{r}^{T} \mathbf{A}_{4} \mathbf{M} \vec{u}_{r}\right\rangle+\left\langle\vec{\phi}_{r}, \mathbf{M}^{T} \mathbf{A}_{4}\left(\mathbf{G}_{r} \vec{u}_{r}+\mathbf{G}_{z} \vec{u}_{z}\right)\right\rangle+\left\langle\vec{\phi}_{r}, \mathbf{G}_{z}^{T} \mathbf{A}_{5}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right)\right\rangle \\
= & \left\langle\mathbf{G}_{r}^{T} \mathbf{A}_{1} \mathbf{G}_{r} \vec{u}_{r}+\mathbf{M}^{T} \mathbf{A}_{2} \mathbf{M} \vec{u}_{r}+\mathbf{G}_{r}^{T} \mathbf{A}_{3} \mathbf{G}_{z} \vec{u}_{z}+\mathbf{G}_{r}^{T} \mathbf{A}_{4} \mathbf{M} \vec{u}_{r}, \vec{\phi}_{r}\right\rangle+ \\
& +\left\langle\mathbf{M}^{T} \mathbf{A}_{4}\left(\mathbf{G}_{r} \vec{u}_{r}+\mathbf{G}_{z} \vec{u}_{z}\right)+\mathbf{G}_{z}^{T} \mathbf{A}_{1}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right), \vec{\phi}_{r}\right\rangle \\
= & \left\langle\left(\mathbf{G}_{r}^{T} \mathbf{A}_{1} \mathbf{G}_{r}+\mathbf{M}^{T} \mathbf{A}_{2} \mathbf{M}+\mathbf{G}_{r}^{T} \mathbf{A}_{4} \mathbf{M}+\mathbf{M}^{T} \mathbf{A}_{4} \mathbf{G}_{r}+\mathbf{G}_{z}^{T} \mathbf{A}_{5} \mathbf{G}_{z}\right) \vec{u}_{r}, \vec{\phi}_{r}\right\rangle \\
& +\left\langle\left(\mathbf{G}_{r}^{T} \mathbf{A}_{3} \mathbf{G}_{z}+\mathbf{M}^{T} \mathbf{A}_{4} \mathbf{G}_{z}+\mathbf{G}_{z}^{T} \mathbf{A}_{5} \mathbf{G}_{r}\right) \vec{u}_{z}, \vec{\phi}_{r}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
I_{\phi_{z}}= & \iint_{T} \frac{r E}{(1+\nu)(1-2 \nu)}\left((1-\nu) \frac{\partial u_{z}}{\partial z} \frac{\partial \phi_{z}}{\partial z}+\nu\left(\frac{\partial u_{r}}{\partial r} \frac{\partial \phi_{z}}{\partial z}+\frac{1}{r} u_{r} \frac{\partial \phi_{z}}{\partial z}\right)\right)+ \\
& +\frac{r E}{2(1+\nu)}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) \frac{\partial \phi_{z}}{\partial r} d A \\
\approx & \left\langle\mathbf{G}_{z} \vec{\phi}_{z}, \mathbf{A}_{1} \mathbf{G}_{z} \vec{u}_{z}\right\rangle+\left\langle\mathbf{G}_{z} \vec{\phi}_{z}, \mathbf{A}_{3} \mathbf{G}_{r} \vec{u}_{r}\right\rangle+\left\langle\mathbf{A}_{4} \mathbf{G}_{z} \vec{\phi}_{z}, \mathbf{M} \vec{u}_{r}\right\rangle+\left\langle\mathbf{G}_{r} \vec{\phi}_{z}, \mathbf{A}_{5}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right)\right\rangle \\
= & \left\langle\vec{\phi}_{z}, \mathbf{G}_{z}^{T} \mathbf{A}_{1} \mathbf{G}_{z} \vec{u}_{z}\right\rangle+\left\langle\vec{\phi}_{z}, \mathbf{G}_{z}^{T} \mathbf{A}_{3} \mathbf{G}_{r} \vec{u}_{r}\right\rangle+\left\langle\vec{\phi}_{z}, \mathbf{G}_{z}^{T} \mathbf{A}_{4} \mathbf{M} \vec{u}_{r}\right\rangle+\left\langle\vec{\phi}_{z}, \mathbf{G}_{r}^{T} \mathbf{A}_{5}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right)\right\rangle \\
= & \left\langle\mathbf{G}_{z}^{T} \mathbf{A}_{1} \mathbf{G}_{z} \vec{u}_{z}+\mathbf{G}_{z}^{T} \mathbf{A}_{3} \mathbf{G}_{r} \vec{u}_{r}+\mathbf{G}_{z}^{T} \mathbf{A}_{4} \mathbf{M} \vec{u}_{r}+\mathbf{G}_{r}^{T} \mathbf{A}_{5}\left(\mathbf{G}_{z} \vec{u}_{r}+\mathbf{G}_{r} \vec{u}_{z}\right), \vec{\phi}_{z}\right\rangle \\
= & \left\langle\left(\mathbf{G}_{z}^{T} \mathbf{A}_{3} \mathbf{G}_{r}+\mathbf{G}_{z}^{T} \mathbf{A}_{4} \mathbf{M}+\mathbf{G}_{r}^{T} \mathbf{A}_{5} \mathbf{G}_{z}\right) \vec{u}_{r}, \vec{\phi}_{z}\right\rangle+\left\langle\left(\mathbf{G}_{z}^{T} \mathbf{A}_{1} \mathbf{G}_{z}+\mathbf{G}_{r}^{T} \mathbf{A}_{5} \mathbf{G}_{r}\right) \vec{u}_{z}, \vec{\phi}_{z}\right\rangle .
\end{aligned}
$$

All of the above contributions are of the form $\left\langle\mathbf{A}_{r} \vec{u}_{r, z}, \vec{\phi}_{r}\right\rangle$ or $\left\langle\mathbf{A}_{z} \vec{u}_{r, z}, \vec{\phi}_{z}\right\rangle$ and thus contributions to the element stiffness matrix $\mathbf{A} \in \mathbb{M}^{12 \times 12}$, where $\mathbf{A}_{r, z} \in \mathbb{M}^{6 \times 6}$. For sake of completeness the symmeytric 12×12 element stiffness matrix \mathbf{A} is given by

$$
\left[\begin{array}{cc}
\mathbf{G}_{r}^{T} \mathbf{A}_{1} \mathbf{G}_{r}+\mathbf{M}^{T} \mathbf{A}_{2} \mathbf{M}+\mathbf{G}_{r}^{T} \mathbf{A}_{4} \mathbf{M}+\mathbf{M}^{T} \mathbf{A}_{4} \mathbf{G}_{r}+\mathbf{G}_{z}^{T} \mathbf{A}_{5} \mathbf{G}_{z} & \mathbf{G}_{r}^{T} \mathbf{A}_{3} \mathbf{G}_{z}+\mathbf{M}^{T} \mathbf{A}_{4} \mathbf{G}_{z}+\mathbf{G}_{z}^{T} \mathbf{A}_{5} \mathbf{G}_{r} \\
\mathbf{G}_{z}^{T} \mathbf{A}_{3} \mathbf{G}_{r}+\mathbf{G}_{z}^{T} \mathbf{A}_{4} \mathbf{M}+\mathbf{G}_{r}^{T} \mathbf{A}_{5} \mathbf{G}_{z} & \mathbf{G}_{z}^{T} \mathbf{A}_{1} \mathbf{G}_{z}+\mathbf{G}_{r}^{T} \mathbf{A}_{5} \mathbf{G}_{r}
\end{array}\right]
$$

8.9.3 The boundary integral

The boundary integral is constucted similar to the procedures in Section 8.4.3, i.e. building on

$$
\int_{-h / 2}^{h / 2} f(x) d x \approx \frac{h}{18}\left(5 f\left(-\frac{\sqrt{3}}{2 \sqrt{5}} h\right)+8 f(0)+5 f\left(\frac{\sqrt{3}}{2 \sqrt{5}} h\right)\right)
$$

If the values of a function f at the two endpoints and the midpoint are denoted by $\vec{f}=\left(f_{1}, f_{2}, f_{3}\right)^{T}$ use a quadratic interpolation to find the values at the three Gauss integration points, given by $\mathbf{M}_{B} \vec{f}$ and evaluate the radii r_{i} at the Gauss points. With the length L of the segment on the edge obtain the approximate integral

$$
\begin{aligned}
\int_{\text {edge }} r\left(g_{r} \phi_{r}+g_{z} \phi_{z}\right) d s & \approx \frac{L}{18}\left\langle\mathbf{M}_{B} \vec{\phi}_{r},\left(\begin{array}{c}
5 r_{1} g_{r}\left(\vec{p}_{1}\right) \\
8 r_{2} g_{r}\left(\vec{p}_{2}\right) \\
5 r_{3} g_{r}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+\frac{L}{18}\left\langle\mathbf{M}_{B} \vec{\phi}_{z},\left(\begin{array}{c}
5 r_{1} g_{z}\left(\vec{p}_{1}\right) \\
8 r_{2} g_{z}\left(\vec{p}_{2}\right) \\
5 r_{3} g_{z}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle \\
& =\frac{L}{18}\left\langle\vec{\phi}_{r}, \mathbf{M}_{B}^{T}\left(\begin{array}{c}
5 r_{1} g_{r}\left(\vec{p}_{1}\right) \\
8 r_{2} g_{r}\left(\vec{p}_{2}\right) \\
5 r_{3} g_{r}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+\frac{L}{18}\left\langle\vec{\phi}_{z}, \mathbf{M}_{B}^{T}\left(\begin{array}{c}
5 r_{1} g_{z}\left(\vec{p}_{1}\right) \\
8 r_{2} g_{z}\left(\vec{p}_{2}\right) \\
5 r_{3} g_{z}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle .
\end{aligned}
$$

The integration weights can be combined with the interpolation matrix \mathbf{M}_{B} by

$$
\mathbf{M}_{B C}=\frac{1}{18} \mathbf{M}_{B}^{T}\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 5
\end{array}\right] \approx\left[\begin{array}{ccc}
0.1909 & 0 & -0.0242 \\
0.1111 & 0.4444 & 0.1111 \\
-0.0242 & 0 & 0.1909
\end{array}\right]
$$

This matrix $\mathbf{M}_{B C}$ does not depend on the current edge segment and leads to

$$
\int_{\text {edge }} r\left(g_{r} \phi_{r}+g_{z} \phi_{z}\right) d s \approx L\left\langle\vec{\phi}_{r}, \mathbf{M}_{B C}\left(\begin{array}{c}
r_{1} g_{r}\left(\vec{p}_{1}\right) \\
r_{2} g_{r}\left(\vec{p}_{2}\right) \\
r_{3} g_{r}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle+L\left\langle\vec{\phi}_{z}, \mathbf{M}_{B C}\left(\begin{array}{c}
r_{1} g_{z}\left(\vec{p}_{1}\right) \\
r_{2} g_{z}\left(\vec{p}_{2}\right) \\
r_{3} g_{z}\left(\vec{p}_{3}\right)
\end{array}\right)\right\rangle .
$$

The effect of the boundary integral on the global stiffness matrix and the vector is very similar to the approach shown at the end of Section 6.5.8.

8.10 Construction of third order elements

To construct elements of order 3 combine procedures from Section 8.5 for third order elements for plane stress problems and the previous section 8.9 where second order elements are generated for axisymmetric problems.

8.10.1 Integration of $r\left(f_{r} \phi_{r}+f_{z} \phi_{z}\right)$

The computations are identical to Section 8.9 .1 for second order elements. The only difference is the interpolation matrix $\mathbf{M} \in \mathbb{M}^{7 \times 10}$, which has to interpolate from the 10 nodes to the 7 Gauss points. See equation (52) on page 155 . The contributions in (87) for each element stiffness matrix can be determined. The matrix $\mathbf{M}^{T} \mathbf{R W} \mathbf{M}$ is a 10×10 matrix, independent on the triangle T.

8.10.2 Integration of the terms involving derivatives of ϕ_{z} and ϕ_{z}

The algorithm is extremely similar to Section 8.9 .2 for second order elements, but the matrices \mathbf{M}_{ξ} and \mathbf{M}_{ν} are of size 7×10. This leads to the matrices \mathbf{G}_{x} and $\mathbf{G}_{y} \in \mathbb{M}^{7 \times 10}$ to evaluate the partial derivatives at the nodes, using the values of the function at the nodes. The resulting matrices \mathbf{A}_{r} and \mathbf{A}_{z} are of size 10×10, leading to the element stiffness matrix $\mathbf{A} \in \mathbb{M}^{20 \times 20}$.

8.10.3 The boundary integral

The algorithm is extremely similar to Section 8.9 .3 for second order elements. The effect of the boundary integral on the global stiffness matrix and the vector is very similar to the approach shown at the end of Section 6.6.7.

9 Examples, Examples, Examples

9.1 An elliptic problem with variable coefficients

The elliptic BVP in Section 5.5 is

$$
\begin{aligned}
-\nabla\left(\left(1+x^{2}\right) \nabla u(x, y)\right) & =-4\left(1+x^{2}\right) \exp (-2 y) & & \text { for } \quad(x, y) \in \Omega \\
\frac{\partial u(0, y)}{\partial x} & =0 & & \text { for } 1 \leq y \leq 2 \\
u(x, y) & =\exp (-2 y) & & \text { on other sections of the boundary }
\end{aligned}
$$

on the domain shown in Figure 80(a). The exact solution is given by $u_{e}(x, y)=\exp (-2 y)$. To solve this BVP with FEMoctave use the following steps:

1. Use CreateMeshTriangle () to generate a mesh on the rectangle $1 \leq r \leq 2$ and $0 \leq \varphi \leq \pi / 2$.
2. With the polar coordinates use

$$
\binom{x}{y}=\binom{r \cos \varphi}{r \sin \varphi}
$$

to generate the mesh on the section of a ring, visible in Figure 80(a) with the help of an appropriate function Deform () and the function MeshDeform().
3. Then use MeshUpgrade () to generate a mesh with third order elements.
4. Define the coefficient functions $a(x, y)=1+x^{2}$ and the right hand side $f(x, y)=-4\left(1+x^{2}\right) \exp (-2 y)$ with Octave functions.
5. Call the function BVP 2Dsym () with appropriate arguments to calculate the approximate solution $u(x, y)$.
6. Use FEMtrimesh () to display the solution visible in Figure 80(b) and then use FEMIntegrate () to determine the L_{2}-error

$$
\left(\iint_{\Omega}\left|u(x, y)-u_{\text {exact }}(x, y)\right|^{2} d A\right)^{1 / 2} \approx 3.3 \cdot 10^{-6}
$$

Figure 80: The mesh and the solution of an elliptic problem with variable coefficients

DeformVariableCoeff.m

```
    clear *
    h = 0.1
    function xy_new = Deform(xy)
        xy_new = [xy(:,1).*\operatorname{cos}(xy(:,2)), xy(:,1).*\operatorname{sin}(xy(:,2))];
    endfunction
    function u = f_u_exact(xy)
        u = exp(-2*xy(:,2));
    endfunction
    function u = f_DDu_exact(xy)
        u = -4* (1+xy (:,1).^2).*exp (-2*xy (:,2));
    endfunction
    function a = f_a(xy)
        a = 1 + xy(:,1).^2;
    endfunction
    FEMmesh = CreateMeshTriangle('Test',[1,0,-1;2,0,-1;2,pi/2,-2;1,pi/2,-1],h^2);
    FEMmesh = MeshDeform(FEMmesh,'Deform');
    figure(1); FEMtrimesh(FEMmesh)
    FEMmesh = MeshUpgrade(FEMmesh,'cubic');
    u = BVP2Dsym(FEMmesh,'f_a',0,'f_DDu_exact','f_u_exact',0,0);
    figure(2); FEMtrimesh(FEMmesh,u)
                xlabel('x'); ylabel('y'); zlabel('u'); view([-150,30])
    u_exact = f_u_exact(FEMmesh.nodes);
    L2Error = sqrt(FEMIntegrate(FEMmesh,(u-u_exact).^ 2))
    -->
    L2Error = 3.3205e-06
```


9.2 An animated wave

With a narrow Gauss bell surface around $(x, y) \approx(1,0)$ as initial value and zero initial velocity observe the waves traveling away from the initial location and the different types of reflections at the boundaries. Figure 81 shows the final status.

WaveAnimation.m

```
    if 0 %% linear elements
    FEMmesh = CreateMeshRect(linspace(0,pi,101),linspace(-pi,pi,101),-1,-2,-2,-2);
    else %% quadratic elements
    FEMmesh = CreateMeshRect(linspace(0,pi,51),linspace(-pi,pi,51),-1,-2,-2,-2);
    FEMmesh = MeshUpgrade(FEMmesh);
    endif
    x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
    m=1; alpha=0.0; a=1; b0=0; bx=0; by=0; f=0; gD=0; gN1=0; gN2=0;
    t0=0; tend=3 ; steps = [150,10];
    u0 = exp(-25*((x-1).^^2+(y-0).^2));
    v0 = zeros(length(FEMmesh.nodes),1);
    [u_dyn,t] = I2BVP2D(FEMmesh,m,alpha,a,b0,bx,by,f,gD,gN1,gN2,u0,v0,t0,tend,steps);
    figure(1) % show animation
    for t_ii = 1:length(t)
    FEMtrimesh(FEMmesh,u_dyn(:,t_ii))
    axis([0 pi -pi pi -0.2 0.4]); xlabel('x'); ylabel('y')
    drawnow();
endfor
```


Figure 81: Traveling waves on a rectangle

9.3 An elliptic problem with radial symmetry, superconvergence

The Bessel function

$$
u(x, y)=f(x, y)=J_{0}\left(\sqrt{x^{2}+y^{2}}\right)
$$

is an exact solution of the BVP

$$
\begin{aligned}
-\Delta u+u & =2 f & & \text { for } 0<x, y<1 \\
u & =f & & \text { for }(1, y) \text { and }(x, 1) \\
\frac{\partial u}{\partial n} & =0 & & \text { for }(0, y) \text { and }(x, 0)
\end{aligned}
$$

A solution is shown in Figure 82. This BVP is solved by two slightly different approaches, and then the difference to the known exact solution is displayed in Figure 83. In both cases first a mesh with linear elements is generated, then upgraded to a mesh with quadratic elements, using MeshUpgrade (). Then a mesh with identical nodes and DOF with linear elements is generated by MeshQuad2Linear().

1. Use a uniform mesh generated by CreateMeshRect, leading to 400 degrees of freedom. The result in Figure 83(a) shows the effect of super-convergence. Caused by the extremely regular structure of the grid points the differences are smaller than can reasonably be expected.
2. Use a non-uniform mesh generated by CreateMeshTriangle, leading to 432 degrees of freedom. Thus one expects to obtain similar accuracy. The result in Figure 83(b) confirms this.
```
N = 10; Triangle = 1
    if Triangle
        FEMmesh = CreateMeshTriangle('test1',[0 0 -2;1 0 -1; 1 1 -1; 0 1 -2],0.75/N^2);
        FEMmesh = MeshUpgrade(FEMmesh);
```


Figure 82: The radial Bessel function as solution of a BVP

```
FEMmesh1 = MeshQuad2Linear(FEMmesh);
nDOFTri = [FEMmesh.nDOF, FEMmesh1.nDOF]
else
    FEMmesh = CreateMeshRect(linspace(0,1,N+1),linspace(0,1,N+1),-2,-1,-2,-1);
    FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    FEMmesh1 = MeshQuad2Linear(FEMmesh);
    nDOFRect = [FEMmesh.nDOF, FEMmesh1.nDOF]
endif
```


Figure 83: Difference to the exact solution of a BVP

To generate Figure 84 the command FEMgriddata() is used to evaluate the functions on a much finer grid (not recomputing, just evaluation) and then display the difference between the approximate and exact solution. Observe that the error is considerably larger, compared to evaluation at the nodes only. This illustrates that the effect of superconvergence does not provide additional accuracy one can reliably count on.

Figure 84: Difference to the exact solution of a BVP, using quadratic elements and interpolation to a finer grid.

The gradient of this solution u can be determined using $\frac{\partial}{\partial r} J_{0}(r)=-J_{1}(r)$ and

$$
\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=\binom{\cos \phi}{\sin \phi} \frac{\partial u}{\partial r}+\binom{-\sin \phi}{\cos \phi} \frac{\partial u}{\partial \phi}=-\binom{\cos \phi}{\sin \phi} J_{1}(r) .
$$

Using the above FEM results compare the true partial derivative $\frac{\partial u}{\partial x}$ with the one obtained by FEM with second order elements. Find the result in Figure 85. Observe the structure of the difference for the uniform mesh.

Figure 85: Difference of $\frac{\partial u}{\partial x}$ to the exact solution, using second order elements

The above can be repeated using first order elements, leading to Figure 86. The size of the elements was set such that the same number of degrees of freedom are used. Observe that superconvergence strikes again. In this case I have a solid argument for the structural difference along the border.

Find more information on superconvergence in [Zien13, §15.2] or a short demo in [Stah08, §6.8.2].

Figure 86: Difference of $\frac{\partial u}{\partial x}$ to the exact solution, using first order elements

9.4 An example with limited regularity

Let $\Omega \in \mathbb{R}^{2}$ be the unit square $-1<x, y<1$, with the fourth quadrant ($x>0, y<0$) cut out. For some of the calculations identify $(x, y) \in \mathbb{R}^{2}$ with $z=x+i y \in \mathbb{C}$. Examine the functions

$$
\begin{aligned}
w(z) & =z^{2 / 3}=\left(r e^{i \phi}\right)^{2 / 3}=r^{2 / 3} e^{i \phi 2 / 3}=r^{2 / 3}(\cos (\phi 2 / 3)+i \sin (\phi 2 / 3)) \\
u(z) & =r^{2 / 3} \sin (\phi 2 / 3) \\
u(x, y) & =\left(x^{2}+y^{2}\right)^{1 / 3} \sin \left(\frac{2}{3} \operatorname{atan} 2(y, x)\right) .
\end{aligned}
$$

This function satisfies $-\Delta u=0$ and $u(t, 0)=u(0,-t)=0$ for $t>0$. Since $\frac{\partial}{\partial r} u=\frac{2}{3} r^{-1 / 3} \sin \left(\frac{2}{3} \phi\right)$ and $\frac{\partial}{\partial \phi} u=$ $\frac{2}{3} r^{2 / 3} \cos \left(\frac{2}{3} \phi\right)$ the partial derivatives of this function have a singularity at the origin. Compute

$$
\begin{aligned}
\|\nabla u\|^{2} & =\left|\frac{\partial u}{\partial r}\right|^{2}+\left|\frac{1}{r} \frac{\partial u}{\partial \phi}\right|^{2}=\frac{4}{9} r^{-2 / 3}+\frac{4}{9} \frac{1}{r^{2}} \cos ^{2}\left(\frac{2}{3} \phi\right) \\
\iint_{\Omega}\|\nabla u\|^{2} d A & =\frac{4}{9} \int_{0}^{1}\left(\int_{0}^{3 \pi / 2} r^{-2 / 3}+r^{-2} \cos ^{2}\left(\frac{2}{3} \phi\right) d \phi\right) r d r \\
& =\frac{4}{9} \int_{0}^{1}\left(\frac{3 \pi}{2} r^{-2 / 3}+r^{-2} \frac{3 \pi}{4}\right) r d r=\frac{2 \pi}{3} \int_{0}^{1} r^{1 / 3} d r+\frac{\pi}{3} \int_{0}^{1} \frac{1}{r} d r=\infty
\end{aligned}
$$

to observe that the gradient is not bounded in the L_{2} sense. Thus the standard error estimates based on Céa's Lemma do not apply. Expect approximation and convergence problems close to the origin. This is confirmed by the code below and the resulting Figure 87. This example illustrates that non-convex domains with sharp corners might cause convergence problems.

```
x_p = [0;1;1;-1;-1;0]; y_p = [0;0;1;1;-1;-1];
FEMmesh = CreateMeshTriangle("circle34",[x_p,y_p,-ones(size(x_p))], 0.01);
FEMmesh = MeshUpgrade(FEMmesh);
function res = gD(xy)
    phi = mod(atan2(xy(:,2),xy(:,1)),2*pi);
    res = (xy(:,1).^2+ xy(:,2).^2).^(1/3).*sin(2/3*phi);
endfunction
```

```
u = BVP2Dsym(FEMmesh,1,0,0,'gD',0,0);
figure(1); FEMtrimesh(FEMmesh,u);
    xlabel("x"); ylabel("y"); title('FEM solution'); view([30,30])
u_exact = gD(FEMmesh.nodes)
figure(2); FEMtrimesh(FEMmesh,-u+u_exact);
xlabel("x"); ylabel("y"); title('Error of FEM solution'); view([30,30])
```


Figure 87: A solution with singular partial derivatives at the origin

The gradient in Cartesian coordinates can be determined by

$$
\begin{aligned}
\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} & =\binom{\cos \phi}{\sin \phi} \frac{\partial u}{\partial r}+\binom{-\sin \phi}{\cos \phi} \frac{\partial u}{\partial \phi} \\
& =\binom{\cos \phi}{\sin \phi} \frac{2}{3} r^{-1 / 3} \sin (\phi 2 / 3)+\binom{-\sin \phi}{\cos \phi} \frac{2}{3} r^{+2 / 3} \cos (\phi 2 / 3)
\end{aligned}
$$

and then visualized, leading to Figure 88. It is clearly visible that the FEM solution is not accurate where the gradient has a singularity.

```
[ux,uy] = FEMEvaluateGradient (FEMmesh,u);
figure(3); FEMtrimesh(FEMmesh,ux);
    xlabel("x"); ylabel("y"); title('FEM solution, u_x'); view([30,30])
figure(4); FEMtrimesh(FEMmesh,uy);
    xlabel("x"); ylabel("y"); title('FEM solution, u_y'); view([30,30])
figure(5); FEMtrimesh(FEMmesh,sqrt(ux.^2+uy.^2));
    xlabel("x"); ylabel("y"); title('FEM solution, norm of gradient');
    view([30,30])
```

Singularities can show up in mechanical problems, e.g. for the washer fastener example in Section 9.35.

9.5 A potential flow problem

Consider a laminar flow between two plates with an obstacle between the two plates. Assume that the situation is independent on one of the spatial variables and consider a cross section shown in Figure 89. The goal is to find the velocity field \vec{v} of the fluid.

Figure 88: A solution with singular partial derivatives, graphs of $\frac{\partial u}{\partial x}$ and $\|\nabla u\|$

This problem is solved by introducing a velocity potential $\Phi(x, y)$. The velocity vector \vec{v} is then given by

$$
\vec{v}=\binom{v_{x}}{v_{y}}=-\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}
$$

The flow is assumed to be uniform far away from the obstacle. Thus set the potential to $\Phi=1$ (resp. $\Phi=0$) at the left (resp. right) end of the plates. Since the fluid can not flow through the boundaries of the plates use that the normal component of the velocity has to vanish at the upper and lower boundary. The differential equation to be satisfied by Φ is

$$
\Delta \Phi=\operatorname{div}(\operatorname{grad} \Phi)=0
$$

In Figure 90 the resulting flow is visualized. Observe the unrealistic velocities at the corners of the domain. The model of laminar flow is not appropriate in this situation. Selecting a finer mesh is no solution to this problem. Mathematically the effect is related to the effect illustrated in Section 9.4.

Figure 89: Fluid flow between two plates, the setup

The results are generated by the code below.

PotentialFlow.m

```
%% define the domain
xy = [0 0 -2; 5 0 -1;5 2 -2; 3 2 -2; 3 0.5 -2; 2 0.5 -2; 1 2 -2; 0 2 -1];
if 1 %% linear elements
        FEMmesh = CreateMeshTriangle('PotentialFlow',xy,0.003);
    elseif 1 %% quadratic elements
        FEMmesh = CreateMeshTriangle('PotentialFlow',xy,4*0.003);
        FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    else %% cubic elements
```


Figure 90: Velocity field of an ideal fluid

```
    FEMmesh = CreateMeshTriangle('PotentialFlow',xy,9*0.003);
    FEMmesh = MeshUpgrade(FEMmesh,'cubic');
endif
x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
function res = gD(xy) res = 1-xy(:,1)/5; endfunction
u = BVP2Dsym(FEMmesh,1,0,0,'gD',0,0);
figure(1); FEMtrimesh(FEMmesh,u)
    xlabel('x'); ylabel('y'); zlabel('potential')
[xx,yy] = meshgrid(linspace(0,5-0.01,25),linspace(0,2-0.01,21));
[u_int,ux_int,uy_int] = FEMgriddata(FEMmesh,-u, xx, yy);
figure(2); quiver(xx,yy,ux_int,uy_int)
    xlabel('x'); ylabel('y');
    hold on; plot([xy(:,1);0],[xy(:,2);0],'k'); hold off; axis equal
xx = linspace(0,5,101); yy = 0.25*ones(101,1);
[u_int,ux_int,uy_int] = FEMgriddata(FEMmesh, -u, xx,yy);
figure(3); plot(xx,ux_int)
    xlabel('x'); ylabel('horizontal velocity'); ylim([0 0.5])
[ux,uy] = FEMEvaluateGradient (FEMmesh,u);
figure(4); FEMtrimesh(FEMmesh,sqrt(ux.^2+ uy.^2))
    xlabel('x'); ylabel('y'); zlabel('v=|grad u|'); zlim([0 0.5])
figure(5); FEMtricontour(FEMmesh,sqrt(ux.^2+ uy.^2),21)
    xlabel('x'); ylabel('y'); zlabel('| grad u|')
    hold on; plot([xy(:,1);0],[xy(:,2);0],'k'); hold off
    xlim([0 5]); ylim([0 2]); axis equal
```

By integrating the horizontal velocities along vertical cuts observe the flux conservation, i.e whats coming in on the left has to flow through the canal and leave on the right.

$$
\begin{array}{r}
\text { flux at inlet } x=0.0 \approx 0.18337 \\
\text { flux in middle } x=2.5 \approx 0.18328 \\
\text { flux at outlet } x=5.0 \approx 0.18333
\end{array}
$$

Selecting a finer mesh or using quadratic elements will make the differences smaller.

```
    yy = linspace(0,2); xx = zeros(size(yy));
    vx = FEMgriddata(FEMmesh,_ux, xx, yy); Flux_inlet_ = trapz(yy,vx)
    yy = linspace(0,0.5); xx = 2.5*ones(size(yy));
    vx = FEMgriddata(FEMmesh,_ux,xx,yy); Flux_middle = trapz(yy,vx)
    yy = linspace(0,2); xx = 5*ones(size(yy));
vx = FEMgriddata(FEMmesh,-ux, xx, yy); Flux_outlet = trapz(yy,vx)
```


9.6 A potential flow problem in a circular pipe

An ideal liquid is flowing through a circular pipe with diminished radius in a central section. The outer radius is given by

$$
R(z)=\left\{\begin{array}{lll}
2 & \text { for } & |z| \geq 1 \\
2-\cos ^{2}\left(\frac{\pi}{2} z\right) & \text { for } & |z| \leq 1
\end{array}\right.
$$

The upper half of a section is visible in Figure 91. Assuming that the solution is independent on the angle θ the equation $\Delta \Phi=0$ has to be reformulated in cylindrical coordinates and simplified.

$$
0=\Delta \Phi=\operatorname{div}(\operatorname{grad} \Phi)=\Phi_{r r}+\frac{1}{r} \Phi_{r}+\frac{1}{r^{2}} \Phi_{\theta \theta}+\Phi_{z z}
$$

$$
0=r\left(\Phi_{r r}+\frac{1}{r} \Phi_{r}+\Phi_{z z}\right)=r \Phi_{r r}+\Phi_{r}+r \Phi_{z z}=\frac{\partial}{\partial r}\left(r \Phi_{r}\right)+\frac{\partial}{\partial z}\left(r \Phi_{z}\right) .
$$

Setting $\Phi=+1$ at the left edge and $\Phi=-1$ at the right edge, the BVP can be solved for the potential $\Phi(z, r)$ with the help of FEMoctave. The velocity vector is again given by the gradient

$$
\vec{v}=\binom{v_{z}}{v_{r}}=-\binom{\frac{\partial \Phi}{\partial z}}{\frac{\partial \Phi}{\partial r}}
$$

Observe that there are no singularities for the velocities, compared to the previous section 9.5 , since there are no sharp corners in the domain.

Figure 91: Velocity field of a ideal fluid in a circular pipe

```
%% define the domain and mesh
R = 2; R_in = 1.0; area = 0.001;
z = linspace(-1+sqrt(area),1-sqrt(area),21)'; r = R-R_in*cos(pi/2*z).^2;
b = -2*ones(size(z));
zr = [-2 0 -1; -2 R -2; -1 R -2; [z,r,b]; 1 R -2; 2 R -1; 2 0 -2];
if 0 %% linear elements
    FEMmesh = CreateMeshTriangle('PotentialFlow',zr,area);
```

```
elseif 0 %% quadratic elements
    FEMmesh = CreateMeshTriangle('PotentialFlow',zr,4*area);
    FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
else %%% cubic elements
    FEMmesh = CreateMeshTriangle('PotentialFlow',zr,9*area);
    FEMmesh = MeshUpgrade(FEMmesh,'cubic');
endif
z = FEMmesh.nodes(:,1); z = FEMmesh.nodes(:,2);
function res = gD(zr) res = -zr(:,1)/2; endfunction
function res = a_coeff(zr) res = zr(:,2); endfunction
u = BVP2Dsym(FEMmesh,'a_coeff',0,0,'gD',0,0);
[zz,rr] = meshgrid(linspace(-2,2-0.01,35),linspace(0,R-0.01,41));
[u_int,uz_int,ur_int] = FEMgriddata(FEMmesh,-u, zz, rr);
figure(1); quiver(zz,rr,uz_int,ur_int)
    xlabel('z'); ylabel('r');
    hold on; plot([zr(:,1);-2],[zr(:,2);0],'k'); hold off
    xlim([-2,2]); ylim([0,R]);
[uz,ur] = FEMEvaluateGradient (FEMmesh,u);
figure(2); FEMtrimesh(FEMmesh,sqrt(uz.^2+ ur.^2))
    xlabel('z'); ylabel('r'); zlabel('v=|grad u|')
    zlim([0 1]); caxis([0,1])
zz = linspace(-2,2,101); rr = 0.5*ones(101,1);
[u_int,uz_int,ur_int] = FEMgriddata(FEMmesh,-u,zz,rr);
figure(3); plot(zz,uz_int)
    xlabel('z'); ylabel('horizontal velocity');
    ylim([0 1.1*max(uz_int)]
figure(4); FEMtricontour(FEMmesh,sqrt(uz.^2+ ur.^2),31)
    xlabel('z'); ylabel('r'); zlabel('|grad u|')
    hold on; plot([zr(:,1);-2],[zr(:,2);0],'k'); hold off
    xlim([-2 2]); ylim([0 R]); axis equal
```

The total flux accross a vertical line $z=$ const can be determined by the integral

$$
\text { flux }=\int_{0}^{R(z)} v_{z}(r, z) 2 \pi r d r=2 \pi \int_{0}^{R(z)}-\frac{\partial \Phi(z, r)}{\partial z} r d r .
$$

```
rr = linspace(0,R); zz = -1.9*ones(size(rr)); vz = FEMgriddata(FEMmesh,-uz, zz, rr);
Flux_inlet = trapz(rr,rr.*vz)* 2*pi
rr = linspace(0,R-R_in); zz = 0*ones(size(rr)); vz = FEMgriddata(FEMmesh,-uz,zz,rr);
Flux_middle = trapz(rr,rr.*vz)*2*pi
rr = linspace(0,R); zz = 1.9*ones(size(rr)); vz = FEMgriddata(FEMmesh,-uz, zz, rr);
Flux_outlet = trapz(rr,rr.*vz)*2*pi
-->
Flux_inlet = 3.3115
Flux_middle = 3.2897
Flux_outlet = 3.3115
```

The accurracy of the numerical results

$$
\begin{array}{r}
\text { flux at inlet } z=-1.9 \approx 3.3115 \\
\text { flux in middle } x=+0.0 \approx 3.2897 \\
\text { flux at outlet } x=+1.9 \approx 3.3115
\end{array}
$$

could be improved by a finer mesh. This would verify the conservation of flux at different z-levels.

9.7 A potential flow around a wing profile

For many years it was common knowledge that the Bernoulli's law leads to the main force allowing planes to fly. See e.g. https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/. Now one should know differently, but the setup is an interesting problem to examine. Thus examine the air flow around a wing profile. The velocity v along the surface of the wing leads to a pressure proportional to v^{2}.

- Examine a potential flow (https://en.wikipedia.org/wiki/Potential_flow) around a wing profile. Find examples of wing profiles at https://en.wikipedia.org/wiki/NACA_airfoil. For an NACAxx profile for $0 \leq x \leq 1$ with maximal height T the curves for the upper and lower part are given by

$$
h= \pm 5 \cdot T \cdot\left(0.2969 \sqrt{x}-0.1260 x-0.3516 x^{2}+0.2843 x^{3}-(0.1015-0.0021) * x^{4}\right) .
$$

The correction of the last term assures that the profile satisfies $h(1)=0$, i.e. it is a closed curve. This is implemented as function FoilThickness () and a sample foil is shown in Figure 92. This foils is then rotated by an angle, e.g. by 10° with Angle $=-10 / 180 *$ pi. Using the slopes of the foil function the angles of the normal vectors are computed along both edges of the foil.

- On a domain $-0.5 \leq x \leq 2$ and $-0.6 \leq y \leq 0.5$ with the hole given by the wing profile the potential equation $\Delta \varphi=0$ is solved with boundary conditions $\varphi(x, y)=-x$ along the two edges at $x=-0.5$ and $x=+2$. On the other boundaries a Neumann condition $\frac{\partial \varphi}{\partial \vec{n}}=0$ is used. Thus the gradient $\nabla \varphi$ will be tangential to the boundaries.
- With BVP2Dsym () and FEMEvaluateGradient () the potential $\varphi(x, y)$ and its partial derivatives are evaluated.

Figure 92: The wing profile and the mesh with the rotated wing

```
x = linspace(0,1, 200)';
function [height,slope] = FoilThickness(x)
        FoilT = 0.10; %% thickness of profile
        height = 5*FoilT*(0.2969*sqrt (x)-0.1260*x-0.3516*x.^2+0.2843*x.^3-0.1015*x.^4);
        fix = height (end)/(5*FoilT);
    height = 5*FoilT*(0.2969*sqrt (x) -0.1260*x-0.3516*x.^2+0.2843*x.^ 3-(0.1015+fix)*x.^4);
    slope = 5*FoilT*(0.2969*0.5./sqrt (x) -0.1260-2*0.3516*x+3*0.2843*x.^2-4*(0.1015+fix)*x.^ 3);
    slope(1) = (2*sqre(2)-1)*slope (2);
endfunction
[height,slope] = FoilThickness(x) ;
figure(1); plot(x, [-height,height]); axis equal
```

```
Angle = -10/180*pi; %% angle of attack
R = [cos(Angle),-sin(Angle);+sin(Angle),cos(Angle)];
Upper = (R*[x,height]')'; Lower = (R*[x,-height]')';
AngleNormalUpper = atan2(+1,-slope)+Angle;
AngleNormalLower = atan2(-1,-slope)+Angle;
DomainHole = [flipud(Upper);Lower(1:end-1,:)];
Hole.name = 'hole';
Hole.border = [DomainHole, -2*ones(length(DomainHole),1)];
Hole.point = [0.1,0];
Borders = [-0.5,-0.6,-2;2,-0.6,-1;2,0.5,-2;-0.5,0.5,-1];
Mesh = CreateMeshTriangle('Wing',Borders,1e-2,Hole);
figure(2); FEMtrimesh(Mesh); axis equal
Mesh = MeshUpgrade(Mesh,'cubic');
function res = gD(xy)
    res = -xy(:,1);
endfunction
u = BVP2Dsym(Mesh,1,0,0,'gD',0,0);
[ux,uy] = FEMEvaluateGradient (Mesh,u) ;
```

- With the above result the speed v can be evaluated, using $v^{2}=\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}$. According to Bernoulli's law the change of pressure p is proportional to $-v^{2}$. Thus the graphs (Figure 93) and contour lines (Figure 94) of v^{2} provide information on the pressure distribution.
- To find the vertical force density on the wing determine the vertical component of the pressure based force by using the angle of the normal vectors. Find the graphs in Figure 93. For the total vertical force integrate along the upper and lower edge of the foil using the arc length elements.

$$
F_{\text {upper }}=\int_{0}^{1} p \cos \left(\alpha_{\text {upper }}(x)\right) \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x=\int_{0}^{1} p \cos \left(\alpha_{\text {upper }}(x)\right) d s
$$

Use $d s \approx \Delta s=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$ and the trapezoidal rule trapz () to evaluate the integrals. The difference $F_{\text {upper }}-F_{\text {lower }}$ is an estimate for the total lift.

Figure 93: The surface for v^{2} and the vertical pressure along the upper and lower edge of the wing

```
\ Wing.m
```

```
v = sqrt(sum([ux.^2,uy.^2],2));
```

v = sqrt(sum([ux.^2,uy.^2],2));
figure(3); FEMtrimesh(Mesh,v.^2); xlabel('x'); ylabel('y'); zlabel('v^2');

```
figure(3); FEMtrimesh(Mesh,v.^2); xlabel('x'); ylabel('y'); zlabel('v^2');
```


Figure 94: The contour plot for the pressure

```
    zlim([0,2]); caxis([min(v.^2),2])
Levels = [0.5:0.1:2];
figure(4); clf; FEMtricontour(Mesh,v.^2,Levels); xlabel('x'); ylabel('y');
    title('contours of v^2'); colorbar(); axis equal
    hold on; plot(DomainHole(:,1),DomainHole(:,2),'k'); hold off
x = x(1:end-1); Upper = Upper(1:end-1,:); Lower = Lower(1:end-1,:);
AngleNormalUpper = AngleNormalUpper(1:end-1);
AngleNormalLower = AngleNormalLower(1:end-1);
function res = ArcLength(x,y);
    dx = diff(x); dy = diff(y); ds = sqrt(dx.^2+dy.^2);
    res = [0;cumsum(ds)];
endfunction
dsUpper = ArcLength(Upper(:,1),Upper(:,2));
pUpper = FEMgriddata(Mesh,v.^2,Upper(:,1),Upper(:,2)).*sin(AngleNormalUpper);
ForceUpper = trapz(dsUpper,pUpper)
dsLower = ArcLength(Lower(:,1),Lower(:,2));
pLower = FEMgriddata(Mesh,v.^2,Lower(:,1),Lower(:,2)).*sin(AngleNormalLower);
ForceLower = trapz(dsLower,pLower)
figure(5); plot(dsUpper,pUpper,dsLower,-pLower); ylabel('pressure');
    legend('p_{upper}','-p_{lower}','location','north');
    xlim([0,1]); ylim([0,max(pUpper)])
```

- Using the vector field generated by $\nabla \varphi$ the command streamline () will generate the streamlines, leading to Figure 95.

```
                                    Wing.m
    [xx,yy] = meshgrid(linspace(-0.5,1.5,201),linspace(-0.5,0.5,201));
    [ui,uxi,uyi] = FEMgriddata(Mesh,u,xx,yy) ;
    figure(6); clf; NN = 25;
        streamline(xx,yy,-uxi,-uyi,-0.5*ones(1,NN),linspace(-0.3,0.2,NN), [0.1,10000]);
        hold on; plot(DomainHole(:,1),DomainHole(:,2),'k'); hold off; axis equal
```


Figure 95: The flow lines around the wing

9.8 A minimal surface problem

Let $u(x, y)$ be the hight of a surface above the border of a 2 -dimensional domain Ω is given by a function $g(x, y)$. Then the function u representing the surface of minimal with has to solve a nonlinear PDE.

$$
\begin{aligned}
\operatorname{div}\left(\frac{1}{\left.\sqrt{1+|\operatorname{grad} u|^{2}} \operatorname{grad} u\right)}\right. & =0 & & \text { in domain } \Omega \\
u & =g & & \text { on } \Gamma=\partial \Omega
\end{aligned}
$$

FEMoctave is not directly capable of solving non linear problems, but a simple iteration will lead to an approximation of

Figure 96: A minimal surface
the solution.

- start with an initial solution $u_{0}(x, y)=0$
- repeat until the change in solution is small enough
- compute the coefficient function

$$
a(x, y)=\frac{1}{\sqrt{1+|\nabla u(x, y)|^{2}}}
$$

- Solve the boundary value problem

$$
\begin{aligned}
\operatorname{div}(a(x, y) \operatorname{grad} u) & =0 & \text { in the domain } \Omega \\
u & =g & \text { on } \quad \Gamma=\partial \Omega
\end{aligned}
$$

The code below implements this algorithm for a square Ω and leads to the result in Figure 96. While iterating the area of each surface is determined by integrating

$$
\text { area }=\iint_{\Omega} \sqrt{1+|\nabla u|^{2}} d A
$$

and the average difference of subsequent solutions is computed.

```
\squareMinimalSurface.m
    xy = [1,0,-1;0,1,-1;-1,0,-1;0,-1,-1];
    FEMmesh = CreateMeshTriangle("square",xy,0.01);
    %FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    x = FEMmesh.nodes(:,1); y = FEMmesh.nodes(:,2);
    function res = BC(xy) res = abs(xy(:,1)); endfunction
    u = BVP2Dsym(FEMmesh,1,0,0,'BC',0,0);
    difference = zeros(5,1); area = difference;
    for ii = 1:5
        [ ~,grad] = FEMEvaluateGP (FEMmesh,u);
        coeff = sqrt(1+grad(:,1).^2+ grad(:,2).^2);
        area(ii) = FEMIntegrate(FEMmesh,coeff);
        u_new = BVP2Dsym(FEMmesh,coeff,0,0,'BC',0,0);
        difference(ii) = mean(abs(u_new-u));
        u = u_new;
    endfor
    Area_Difference = [area,difference]
    figure(1); FEMtrisurf(FEMmesh,x,y,u)
        xlabel('x'); ylabel('y'); zlabel('z')
    -->
    Area_Difference = 2.30454229746 0.00271116350
        2.30609424101 0.00030136719
        2.30586894444 0.00003705316
        2.30589632291 0.00000508928
        2.30589260378 0.00000078521
```

By choosing quadratic or cubic elements, or a finer mesh, one can observe that the computed minimal area will be smaller. This should not come as a surprise, the better the resolution, the smaller the minimal area.

9.9 Computing a capacitance

9.9.1 State the problem

Examine a circular plate capacitance as shown in Figure 97. Based on the radial symmetry one should be able to consider a two dimensional section only for the computations.

Consider the voltage u as unknown. On the upper conductor assume $u=1$ and on the lower conductor $u=-1$. Based on the symmetry consider a section only and use $u=0$ in the plane centered between the conductors. Use the Laplace operator in cylindrical coordinates. Thus the following boundary value problem has to be solved.

$$
\begin{array}{rlll}
\operatorname{div}(x \operatorname{grad} u(x, y)) & =0 & & \text { in domain } \\
u(x, 0) & =0 & & \text { along edge } y=0 \tag{89}\\
u(x, y) & =1 & & \text { along edges of upper conductor } \\
\frac{\partial}{\partial n} u(x, y) & =0 & & \text { on remaining boundary }
\end{array}
$$

Figure 97: The capacitance and the section used for the modeling

Assume that the domain is embedded in the rectangle $0 \leq x \leq R$ and $0 \leq y \leq H$. The lower edge of the conductor is at $y=h$ and $0 \leq x \leq r$. If $h \ll r$ expect the gradient of u to be $1 / h$ between the plates and zero away from the plates. Thus

$$
\text { flux }=\iint_{\text {disk }} \vec{n} \cdot \operatorname{grad} u d A=2 \pi \int_{0}^{R} x \frac{\partial u}{\partial y} d x \approx 2 \pi \int_{0}^{r} x \frac{1}{h} d x=\frac{\pi r^{2}}{h} .
$$

Because the electric field will not be homogeneous around the boundaries of the disk expect deviations from the result of an idealized circular disk. With the divergence theorem and a physical argument one can verify that the flux trough the midplane is proportional to the capacitance. By applying the following steps compute the capacitance by analyzing the solution of a boundary value problem.

1. Create a mesh for the domain in question.
2. Define parameters and boundary conditions.
3. Solve the partial differential equation and visualize the solution.
4. Compute the flux through the midplane as an integral to determine the capacitance.

9.9.2 Create the mesh and solve the BVP

According to Figure 97 create a mesh with the following data.

> | $h=0.2$ | distance between midplane and lower edge of capacitance |
| :---: | :--- |
| $r=1.0$ | radius of disk of the capacitance |
| $H=0.5$ | height of the enclosing rectangle |
| $R=2.5$ | radius of the enclosing rectangle |

As input for the mesh generating code triangle (see [www:triangle]) use

- the coordinates of the corner points, numbered according to Figure 97
- a list of all the connecting edges and the type of boundary conditions to be used
- information of the desired area of the triangles to be generated

Then use two different sizes of the triangles since a finer mesh between the plates is required, expecting large variations in the solution. The file capacitance.poly provides this information. The numbering of the nodes is visible in Figure 97. With the above use the program triangle to generate a mesh.

```
triangle -pqa capacitance.poly
```

The mesh consists of 2189 nodes, forming 4036 triangles.
To solve the BVP (89) one needs a definition of the coefficient function and the Dirichlet boundary function. Then set up and solve the system of linear equations. This leads to a system for 1937 unknowns. Now generate a plot of the voltage $u(x, y)$ and its level curves. Find the results in Figure 100.

Figure 98: A mesh on the domain

Figure 99: The contour lines of the resulting voltage

Figure 100: Voltage plot and electric field between the plates of the capacitance

9.9.3 Compute the capacitance

It remains to compute the flux through the midplane. For this start out by computing the gradient of the voltage u along the line $y=0$. Find the plot of the normal component in Figure 100. The graph confirms that between the plates the gradient is approximately $1 / h=1 / 0.2=5$ and vanishes away from the plate. Then a trapezoidal rule is used to determine the flux accross the midplane with the integral.

$$
\text { flux }=\iint_{\text {disk }} \vec{n} \cdot \operatorname{grad} u d A=2 \pi \int_{0}^{R} x \frac{\partial u}{\partial y} d x
$$

For the selected values of h, H, r and R obtain a factor of 1.5 between result of the boundary value problem and the idealized approximation $\pi r^{2} / h$. Thus the simple formula is not a good approximation, the distance h is too large compared to the radius r.

Capacitance.m

```
FEMmesh = ReadMeshTriangle('capacitance.1');
%% FEMmesh = MeshUpgrade(FEMmesh,'quadratic'); %% uncomment fora quadratic mesh
figure(1); FEMtrimesh(FEMmesh) %% display the generated mesh
function res = a(xy,dummy) res = xy(:,1); endfunction
function res = Volt(xy,dummy) res = xy(:,2)>0.1; endfunction
u = BVP2Dsym(FEMmesh,'a',0,0,'Volt',0,0);
figure(2); FEMtrimesh(FEMmesh,u);
        view([38,48]); xlabel('radius r'); ylabel('height z'); zlabel('voltage')
figure(3); FEMtricontour(FEMmesh,u,21);
        xlabel('radius r'); ylabel('height z');
[ux,uy] = FEMEvaluateGradient (FEMmesh,u);
xi = linspace(0,2.5,101)'; yi = zeros(101,1);
uy_i = FEMgriddata(FEMmesh,uy,xi,yi);
figure(4); plot(xi,uy_i)
        xlabel('radius r'); ylabel('u_z'); ylim([-1,6])
Integral = [2*pi*trapz(xi,xi.*uy_i), pi*1^2/0.2]
-->
Integral = 23.782 15.708
```


9.10 Torsion of beams, Prandtl stress function

Examine the torsion of a shaft with constant cross section. Based on a few assumtions determine the deformation of the shaft under torsion. The problem is presented in [VarFEM] and find more details in [Sout73, §12].

9.10.1 The setup with the warp function and the Prandtl stress function

Consider a vertical shaft with constant cross section. The centers of gravity of the cross section are along the z axis and the bottom of the shaft is fixed. The top surface is twisted by a total torque T. The situation of a circular cross section is shown in Figure 101. There is no exact specification of the forces and twisting moments applied to the two ends. Based on Saint-Venant principle (see [Sout73, §5.6]) assume that the stress distribution in the cross sections does not depend on z, except very close to the two ends. The twisting leads to a rotation of each cross section by angle β where $\beta=z \cdot \alpha$. The constant α is a measure of the change of angle per unit length of the shaft. Its value α has to be determined, using the moment T. Based on this determine the horizontal displacements for small angles β by the right part of Figure 101 and a linear approximation

$$
\begin{aligned}
& u_{1}(x, y)=r \cos (\beta+\theta)-r \cos (\theta) \approx-\beta r \sin \theta=-y \beta=-y z \alpha \\
& u_{2}(x, y)=r \sin (\beta+\theta)-r \sin (\theta) \approx+\beta r \cos \theta=+x \beta=+x z \alpha
\end{aligned}
$$

It is assumed that the vertical displacement is independent of z and given by a warping function $\phi(x, y)$. This leads to the displacements

$$
u_{1}=-y z \alpha \quad, \quad u_{2}=x z \alpha \quad, \quad u_{3}=\alpha \phi(x, y)
$$

Figure 101: Torsion of a shaft
and thus the strain components

$$
\varepsilon_{x x}=\varepsilon_{y y}=\varepsilon_{z z}=\varepsilon_{x y}=0 \quad, \quad \varepsilon_{x z}=-\frac{1}{2} \alpha y+\frac{1}{2} \alpha \frac{\partial \phi}{\partial x} \quad, \quad \varepsilon_{y z}=\frac{1}{2} \alpha x+\frac{1}{2} \alpha \frac{\partial \phi}{\partial y} .
$$

Using Hooke's law find the stress components

$$
\sigma_{x}=\sigma_{y}=\sigma_{z}=\tau_{x y}=0 \quad, \quad \tau_{x z}=\frac{E \alpha}{2(1+\nu)}\left(-y+\frac{\partial \phi}{\partial x}\right) \quad, \quad \tau_{y z}=\frac{E \alpha}{2(1+\nu)}\left(x+\frac{\partial \phi}{\partial y}\right) .
$$

The problem is neither plane stress $\left(\tau_{x z} \neq 0, \tau_{y z} \neq 0\right)$ nor plane strain $(\phi \neq 0)$. Using the stresses determine the horizontal forces and the torsion along a hypothetical horizontal cross section. Since the origin is the center of gravity of the cross section Ω the first moments vanish and

$$
\begin{aligned}
T & =\iint_{\Omega} x \tau_{y z}-y \tau_{y z} d A=\frac{E \alpha}{2(1+\nu)} \iint_{\Omega} x\left(x+\frac{\partial \phi}{\partial y}\right)-y\left(-y+\frac{\partial \phi}{\partial x}\right) d A \\
& =\frac{E \alpha}{2(1+\nu)} \iint_{\Omega} x^{2}+y^{2}+x \frac{\partial \phi}{\partial y}-y \frac{\partial \phi}{\partial x} d A=\frac{E \alpha}{1+\nu} J .
\end{aligned}
$$

Using the torsional rigidity J with

$$
J=\iint_{\Omega} x^{2}+y^{2}+x \frac{\partial \phi}{\partial y}-y \frac{\partial \phi}{\partial x} d A
$$

determine the constant α by

$$
\alpha=\frac{2(1+\nu)}{J E} T
$$

and thus for a shaft of height H the total change of angle β as

$$
\beta=H \cdot \alpha=\frac{2(1+\nu)}{J E} H \cdot T .
$$

The only difficult part is to determine the function ϕ, then J is determined by an integration.
The above computations allow to compute the energy E in one cross section Ω by

$$
\begin{aligned}
E & =\iint_{\Omega} \sigma_{x z} \tau_{x z}+\sigma_{y z} \tau_{y z} d A=\frac{E \alpha^{2}}{4(1+\nu)} \iint_{\Omega}\left(-y+\frac{\partial \phi}{\partial x}\right)^{2}+\left(x+\frac{\partial \phi}{\partial y}\right)^{2} d A \\
& =\frac{E \alpha^{2}}{4(1+\nu)} \iint_{\Omega}\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}-2 y \frac{\partial \phi}{\partial x}+2 x \frac{\partial \phi}{\partial y}+x^{2}+y^{2} d A .
\end{aligned}
$$

The warp function ϕ has to minimize this expression. Using calculus of variations (e.g. [VarFEM]) one can show that ϕ has to solve the boundary value problem

$$
\begin{array}{rlrl}
\operatorname{div}(\nabla \phi)=\Delta \phi & =0 & & \text { in the cross section } \Omega \\
\vec{n} \cdot \nabla \phi & =\binom{y}{-x} \cdot \vec{n} & \text { on the boundary } \partial \Omega \tag{90}
\end{array} .
$$

Since the stress components are given by

$$
\sigma_{x}=\sigma_{y}=\sigma_{z}=\tau_{x y}=0 \quad, \quad \tau_{x z}=\frac{E \alpha}{2(1+\nu)}\left(-y+\frac{\partial \phi}{\partial x}\right) \quad, \quad \tau_{y z}=\frac{E \alpha}{2(1+\nu)}\left(x+\frac{\partial \phi}{\partial y}\right)
$$

the boundary condition can be written as

$$
\binom{\tau_{x z}}{\tau_{y z}} \cdot \vec{n}=0
$$

This equation implies that there is no stress on the lateral surface of the shaft. This condition is consistent with the mechanical setup.

The Prandtl stress funktion χ is characterized by

$$
\frac{\partial \chi}{\partial y}=-y+\frac{\partial \phi}{\partial x}=\frac{2(1+\nu)}{E \alpha} \tau_{x z} \quad \text { and } \quad-\frac{\partial \chi}{\partial x}=x+\frac{\partial \phi}{\partial y}=\frac{2(1+\nu)}{E \alpha} \tau_{y z} .
$$

By differentiating the above equations by y (resp. x) and subtracting and using $\frac{\partial}{\partial x} \frac{\partial \phi}{\partial y}=\frac{\partial}{\partial y} \frac{\partial \phi}{\partial x}$ find

$$
\Delta \chi=\frac{\partial^{2} \chi}{\partial x^{2}}+\frac{\partial^{2} \chi}{\partial y^{2}}=-2
$$

To determine the boundary conditions for χ assume that there are no external forces on the boundary.

$$
\binom{\tau_{x z}}{\tau_{y z}} \cdot \vec{n}=0 \quad \Longrightarrow \quad\binom{\frac{\partial \chi}{\partial y}}{-\frac{\partial \chi}{\partial x}} \cdot \vec{n}=\nabla \chi \cdot \vec{t}=0
$$

where \vec{t} is a tangential vector of the boundary curve. Assuming that there are no holes ${ }^{32}$, this implies that one can work with $\chi=0$ on the boundary Γ. Thus the Pandtl stress function is a solution of the boundary value problem

$$
\begin{align*}
-\Delta \chi & =2 \quad \text { in } \quad \Omega \tag{91}\\
\chi & =0
\end{align*} \quad \text { on } \quad \Gamma .
$$

The torsional rigidity is determined by

$$
J=\iint_{\Omega} x^{2}+y^{2}+x\left(-\frac{\partial \chi}{\partial x}-x\right)-y\left(+\frac{\partial \chi}{\partial y}+y\right) d A=-\iint_{\Omega} x \frac{\partial \chi}{\partial x}+y \frac{\partial \chi}{\partial y} d A .
$$

For ductile materials the von Mises stress indicates the possible fractures in the material. In this case it is given by

$$
\sigma_{v M}=\sqrt{\frac{3}{2}\left(\tau_{x z}^{2}+\tau_{y z}^{2}\right)}=\frac{E \alpha}{2(1+\nu)} \sqrt{\frac{3}{2}} \sqrt{\left(\frac{\partial \chi}{\partial x}\right)^{2}+\left(\frac{\partial \chi}{\partial y}\right)^{2}}=\frac{E \alpha}{2(1+\nu)} \sqrt{\frac{3}{2}}\|\nabla \chi\| .
$$

9.10.2 On a disk with radius R

On a disk with radius R the solution is given by $\chi(x, y)=\frac{1}{2}\left(R^{2}-x^{2}-y^{2}\right)$. Thus the nonzero stresses are

$$
\tau_{x z}=+\frac{E \alpha}{2(1+\nu)} \frac{\partial \chi}{\partial y}=-\frac{E \alpha}{2(1+\nu)} y \quad \text { and } \quad \tau_{y z}=-\frac{E \alpha}{2(1+\nu)} \frac{\partial \chi}{\partial x}=+\frac{E \alpha}{2(1+\nu)} x
$$

[^23]The BVP (90) for the warp function ϕ is

$$
\begin{aligned}
\operatorname{div}(\nabla \phi)=\Delta \phi & =0 & \text { in the cross section } \Omega \\
\vec{n} \cdot \nabla \phi & =\frac{1}{\sqrt{x^{2}+y^{2}}}\binom{y}{-x} \cdot\binom{x}{y}=0 & \text { on the boundary } \partial \Omega
\end{aligned}
$$

with the unique solution $\phi(x, y)=0$, i.e. no warping. The torsional rigidity is given by

$$
J=\iint_{\Omega} x^{2}+y^{2} d A=2 \pi \int_{0} r^{2} r d r=\frac{\pi}{2} R^{4}
$$

and the von Mises stress is given by

$$
\sigma_{v M}=\frac{E \alpha}{2(1+\nu)} \sqrt{\frac{3}{2}} \sqrt{\left(\frac{\partial \chi}{\partial x}\right)^{2}+\left(\frac{\partial \chi}{\partial y}\right)^{2}}=\frac{E \alpha}{2(1+\nu)} \sqrt{\frac{3}{2}} \sqrt{x^{2}+y^{2}}=\frac{E \alpha}{2(1+\nu)} \sqrt{\frac{3}{2}} r .
$$

9.10.3 On a square

To examine the stiffness of a square cross section with a circular cross section examine a square with the same area as a circle with radius $R=1$. Thus the length of a side is $\sqrt{\pi} \approx 1.77$. The code below solves the boundary value problem (91) and then computes the torsional rigidity by integrating

$$
J=-\iint_{\Omega} x \frac{\partial \chi}{\partial x}+y \frac{\partial \chi}{\partial y} d A
$$

The numerical result of $J \approx 1.39$ has to be compared to the result of $J=\frac{\pi}{2} \approx 1.57$ for the disk with Radius 1 . Thus the square cross section leads to less torsional rigidity. Then examine the von Mises stress by plotting

$$
f(x, y)=\sqrt{\left(\frac{\partial \chi}{\partial x}\right)^{2}+\left(\frac{\partial \chi}{\partial y}\right)^{2}}=\|\nabla \chi\| .
$$

Find the result in Figure 102(a). The maximal value of ≈ 1.20 is larger than the maximal value 1 for the disk. Thus for the same twisting angle the square is exposed to a larger von Mises stress.

Figure 102: The von Mises stress caused by torsion of a bar with square or rectangular cross section

TorsionSquare.m

```
    N = 10;
    l = sqrt(pi)/2; al = 1; %% al = sqrt(2); % use this for the rectangle
    Mesh = CreateMeshTriangle('Torsion',...
    [-al*l -1/al*l -1; al*l -1/al*l -1; al*l 1/al*l -1; -al*l 1/al*l -1],pi/2/N^2);
    Mesh = MeshUpgrade(Mesh,'quadratic');
    chi = BVP2Dsym(Mesh,1,0,2,0,0,0);
    [chiGP,gradChi] = FEMEvaluateGP (Mesh,chi);
    xGP = Mesh.GP(:,1); yGP = Mesh.GP(:,2);
    f = xGP.*gradChi(:,1) + yGP.*gradChi(:,2);
    J = FEMIntegrate (Mesh,-f)
    [chi_x,chi_y] = FEMEvaluateGradient(Mesh,chi);
    figure(1); FEMtrisurf(Mesh,sqrt(chi_x.^2 + chi_y.^2))
        xlabel('x'); ylabel('y');
    -->
    J = 1.3873
```


9.10.4 On a rectangle

The above can be repeated for a rectangle with the same are but a ratio of 2 for the length of the sides. The value of $J \approx 1.13$ indicates that the rectangle is even softer and the maximal von Mises stress of ≈ 1.16 is slightly smaller than for the square cross section.

9.11 Dynamic heat conduction problems

The dynamic heat equation with a thermal conductivity $a(x, y)$ is of the form given in equation (4). For the simplified case with no external heating, no convection and the boundary either insulated or at a given temperature arrive at the initial boundary value problem

$$
\begin{align*}
\frac{\partial}{\partial t} u-\nabla \cdot(a \nabla u) & =0 & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
u & =g & & \text { for } \quad(x, y, t) \in \Gamma_{1} \times(0, T] \tag{92}\\
\vec{n} \cdot(a \nabla u) & =0 & & \text { for } \quad(x, y, t) \in \Gamma_{2} \times(0, T] \\
u & =u_{0} & & \text { on } \Omega \text { at } t=0
\end{align*}
$$

In Figure 103 the upper half of the domain is shown, at the lower edge the symmetry constraint $\frac{\partial}{\partial n} u=0$ is used. Assume insulation on all of the boundary, except the left edge Γ_{1} at $x=0$, where the temperature equals 1 . As initial temperature we use $u_{0}(x, y)=0$ and observe how the domain is warming up as time advances.

9.11.1 With a narrow section in the domain

The first case to be examined uses a narrow section between to bigger sections. The dimension of the narrow section can be changed by modifying the parameters $h=0.2$ and $l=0.5$.

- In Figure 104 observed the delayed heating of the section on the right.
- In Figure 105 the temperature along the edge $y=0$ for $0 \leq x \leq 2.5$ and $0 \leq t \leq 10$ is shown, as surface and contour lines.
- In Figure 106 the temerature at the corner $(x, y)=(2.5,0)$ is shown as function of time.

Figure 103: The mesh for a dynamic heat problem

Figure 104: The evolution of the temperature surface at different times

Figure 105: The temperature surface at different times along $y=0$

Figure 106: The temperature as function of time at the endpoint $(2.5,0)$

```
%% parameters
    h=0.2; l = 0.5; Nt = 60; %% number of time steps
    FEMmesh = CreateMeshTriangle('Test',...
    [0 0,-2; 2+1 0 -2; 2+1 1,-2; 1+1 1 -2; 1+l h -2; 1 h -2; 1 1 -2; 0 1 -1],0.01);
    FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    figure(1); FEMtrimesh(FEMmesh);
        axis equal; xlabel('x'); ylabel('y')
    [u t] = IBVP2D(FEMmesh,1,1,0, 0, 0, 0,1, 0, 0, 0, 0, 10, [Nt,10]);
    figure(2); FEMtrimesh(FEMmesh,u(:,end))
        xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1]);
        text(0.2,0.2,0.2,sprintf('t = %4.2f',t(end))); zlabel('temperature')
    figure(3); FEMtrimesh(FEMmesh,u(:,Nt/2+1))
        xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
        text(0.2,0.2,0.2,sprintf('t = %4.2f',t(Nt/2+1))); zlabel('temperature')
    figure(4); FEMtrimesh(FEMmesh,u(:,Nt/3+1))
    xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
    text(0.2,0.2,0.2,sprintf('t = %4.2f',t(Nt/5+1))); zlabel('temperature')
    x = linspace(0,2+l,51); u_int = zeros(size(t,2)-1,size(x,2));
    for jj = 2:size(t,2)
    u_int(jj-1,:) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));
    endfor
    figure(10); mesh(x,t(2:end),u_int)
            xlabel('x'); ylabel('t'); zlabel('temperature at y=0')
    figure(11); [c,h] = contour(x,t(2:end),u_int,[0:0.1:1]);
            clabel (c,h);
            xlabel('x'); ylabel('t');
    figure(12); plot(t(2:end),u_int(:,end))
            xlabel('t'); ylabel('temperature at x=end and y=0')
```


9.11.2 With a section of lower thermal conductivity

On the modified domain visible in Figure 107 in the middle section the conductivity is considerably smaller than in the two side section, i.e.

$$
a(x, y)= \begin{cases}1 & \text { for } 0 \leq x \leq 1 \text { and } x \geq 1.5 \\ \frac{1}{6} & \text { for } 1<x<1.5\end{cases}
$$

- In Figure 108 observed the delayed heating of the section on the right.
- In Figure 109 the temperature along the edge $y=0$ for $0 \leq x \leq 2.5$ and $0 \leq t \leq 10$ is shown, as surface and contour lines.
- In Figure 110 the temperature at the corner $(x, y)=(2.5,0)$ is shown as function of time.

Observe the similar, but not identical, behavior of the two cases examined.

Figure 107: The mesh for a dynamic heat problem

Figure 108: The evolution of the temperature surface at different times
\%\% parameters

```
h = 1.2; l = 0.5; Nt = 60; %% number of time steps
FEMmesh = CreateMeshTriangle('Test',...
    [0 0,-2; 2+1 0 -2; 2+1 1, -2; 1+1 1 -2; 1+1 h -2; 1 h -2; 1 1 -2; 0 1 -1],0.01);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
%%FEMmesh = MeshUpgrade(FEMmesh,'cubic');
```


Figure 109: The temperature surface at different times along $y=0$

Figure 110: The temperature as function of time at the endpoint $(2.5,0)$

```
figure(1); FEMtrimesh(FEMmesh);
    axis equal; xlabel('x'); ylabel('y')
function res = a(xy,dummy)
    l = 0.5;
    res = ones(size(xy,1),1);
    res(find(abs(xy(:,1)-1-1/2)<l/2)) *= 1/6;
endfunction
[u t] = IBVP2D(FEMmesh,1,'a',0, 0, 0, 0,1, 0, 0, 0, 0, 10, [Nt,10]);
figure(2); FEMtrimesh(FEMmesh,u(:,end))
        xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1]);
        text(0.2,0.2,0.2,sprintf('t = %4.2f',t(end))); zlabel('temperature')
figure(3); FEMtrimesh(FEMmesh,u(:,Nt/2+1))
        xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
        text(0.2,0.2,0.2,sprintf('t = %4.2f',t(Nt/2+1))); zlabel('temperature')
figure(4); FEMtrimesh(FEMmesh,u(:,Nt/3+1))
        xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
        text(0.2,0.2,0.2,sprintf('t = %4.2f',t(Nt/5+1))); zlabel('temperature')
x = linspace(0,2+l,51); u_int = zeros(size(t,2)-1,size(x,2));
for jj = 2:size(t,2)
    u_int(jj-1,:) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));
endfor
figure(10); mesh(x,t(2:end),u_int)
    xlabel('x'); ylabel('t'); zlabel('temperature at y=0')
figure(11); [c,h] = contour(x,t(2:end),u_int,[0:0.1:1]);
    clabel(c,h);
    xlabel('x'); ylabel('t');
figure(12); plot(t(2:end),u_int(:,end))
    xlabel('t'); ylabel('temperature at x=end and y=0')
```


9.11.3 Cooling of a cylinder

Examine a cylinder with elliptical cross section and an initial temperature distribution $u_{0}(x, y)$, independent on z. The boundary temperature is fixed at 0 . The domain and the initial temperature profile are visible in Figure 111. The selected, nonsymmetric initial temperature is

$$
u_{0}(x, y)=\exp \left(-(x-0.5)^{2}-2 y^{2}\right) \cdot\left(4-x^{2}-y^{2}\right)
$$

The initial boundary value problem is solved for times $0 \leq t \leq 2$. A few snapshots are visible in Figure 112. By looking at different time slices an animation can be generated.

CylinderCooling.m

```
R = 2; N = 50; alpha = linspace(0,2*pi*N/ (N-1),N)';
Tend = 2; Nt = 60; %% number of shown time steps
FEMmesh = CreateMeshTriangle('circle',[R*cos(alpha),1.5*R*sin(alpha),...
                            -ones(size(alpha))],0.1);
figure(1); FEMtrimesh(FEMmesh)
    xlabel('x') ; ylabel('y'); axis equal
FEMmesh = MeshUpgrade(FEMmesh,'cubic');
function res = u_init(xy)
    x = xy(:,1); y = xy(:,2);
    res = exp(-(x-0.5).^2-2*y.^2) .* (2^2 -x.^2-y.^2);
```


Figure 111: The domain and the initial temperature

Figure 112: The temperature at different times

```
    endfunction
    figure(2); FEMtrimesh(FEMmesh,u_init(FEMmesh.nodes))
        xlabel('x'); ylabel('y'); zlabel('temperature');
    [u,t] = IBVP2Dsym(FEMmesh,1,1,0, 0, 0, 0, 0, 'u_init',0, Tend, [Nt,10]);
    figure(3); FEMtrimesh(FEMmesh,u(:,Nt/4+1))
        xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
    text(-1.8,-2,0.9,sprintf('t = %4.2f',t(Nt/4+1))); zlabel('temperature')
    figure(4); FEMtrimesh(FEMmesh,u(:,Nt/2+1))
        xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
    text(-1.8,-2,0.9,sprintf('t = %4.2f',t(Nt/2+1))); zlabel('temperature')
    figure(5); FEMtrimesh(FEMmesh,u(:, 3*Nt/4+1))
        xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1]);
        text(-1.8,-2,0.9,sprintf('t = %4.2f',t(3*Nt/4+1))); zlabel('temperature')
```

 figure(11) \%\% show the animation
 steps = 2;
 for \(j j=0: 30\)
 FEMtrimesh (FEMmesh,u(:,jj*steps+1))
 text (-1.8, \(-2,0.9, \operatorname{sprintf('t~=~\% ~4.2f',t(jj*steps+1)));~zlabel('temperature')~}\)
 xlabel('x'); ylabel('y'); zlim([0,1]); view([10 30]); caxis([0,1])
 pause(0.2)
 endfor
 Obviously the temperature is decaying as time advances. To examine this behavior determine the tempetarures along the center line at $y=0$, as function of time. In Figure 113.

Figure 113: The temperature at different times along $y=0$

```
    x = linspace(-R,R,31); u_center = zeros(length(x),length(t));
    for jj = 1:length(t)
        u_center(:,jj) = FEMgriddata(FEMmesh,u(:,jj),x,zeros(size(x)));
    endfor
    figure(21); mesh(t,x,u_center)
        xlabel('time t'); ylabel('x'); zlabel('temperatur')
    figure(22); contour(t,x,u_center,51)
        xlabel('time t'); ylabel('x');
```

The decay of the temperature at the center point $(0,0)$ is visible in Figure 114, with linear and logarithmic scale. The exponential decay is clearly displayed in the logarithmic scale. This is consistent with the theoretical result

$$
\begin{equation*}
u(t, x, y)=\sum_{n=1}^{\infty} c_{n} e^{-\lambda_{n} t} u_{n}(x, y) \tag{93}
\end{equation*}
$$

where $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \lambda_{4} \ldots$ and $u_{n}(x, y)$ are the eigenvalues and eigenfunctions of the boundary value problem

$$
\begin{aligned}
-\nabla \cdot \nabla u_{n} & =\lambda_{n} u & & \text { for } & & (x, y) \in \Omega \\
u & =0 & & \text { for } & & (x, y) \in \Gamma
\end{aligned}
$$

For large times t in equation (93) the first eigenvalue will dominate, i.e.

$$
u(t, x, y) \approx c_{1} e^{-\lambda_{1} t} u_{1}(x, y)
$$

Using the Octave command polyfit () with data from the right section in the logarithmic plot in Figure 114 estimate

Figure 114: The temperature decay at the center $(0,0)$
the decay by the exponential $\exp (-1.06 t)$. Using BVP2Deig () the exponent is estimated by $\lambda_{1} \approx 1.04$, i.e. rather close to the above result by polyfit (), which indicates

$$
\log (u(0,0, t)) \approx 0.1556-1.0638 t \quad \text { or } \quad u(0,0, t) \approx 1.1684 e^{-1.0638 t} \quad \text { for } t \text { large }
$$

```
    figure(23); plot(t,u_center(16,:))
        xlabel('time t'); ylabel('temperature at center')
    figure(24); semilogy(t,u_center(16,:))
            xlabel('time t'); ylabel('temperature at center')
    p = polyfit(t(40:end),log(u_center(16,40:end)),1)
    EigVal = BVP2Deig(FEMmesh,1,0,1,0,3)'
    -->
    p = -1.0638 0.1556
    EigVal = 1.0425 2.1314 3.1506
```

Observe that $\lambda_{2} \neq \lambda_{3}$, since the domain is not circular. If the above computations are rerun on a circle of radius $R=2$ obtain $\lambda_{1} \approx 1.45$ and $\lambda_{2}=\lambda_{3} \approx 3.68$. The first eigenvalue $\lambda_{1} \approx 1.45$ is larger, thus the cylinder will cool down faster and the second and third eigenvalues coincide, caused by the circular symmetry of the domain.

9.11.4 Heat waves

In Figure 115 a domain $\Omega \subset \mathbb{R}^{2}$ is visible. The heat equation (a special case of the IBVP (4)) to be solved is

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, y, t)-\Delta u(x, y, t) & =f(x, y, t) & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
\frac{\partial}{\partial n} u(x, y, t) & =0 & & \text { for }(x, y, t) \in \Gamma \times(0, T] \\
u(x, y, 0) & =0 & & \text { on } \Omega
\end{aligned} .
$$

The function $f(x, y, t)$ equals $\cos (0.5 \pi t)$ for $x \leq-0.9$ and zero otherwise. Thus there is a periodic excitation with period 5 at the very left end of the appendix for $-1 \leq x \leq-0.9$.

Figure 115: The domain for a heat wave propagation

The solution is generated by the command $\operatorname{IBVP} 2 \mathrm{D}()$ and then evaluated along the slice at height $y=1$ for different values of the time t, using FEMgriddata (). Find the result in Figure 116.

- In Figure 116(a) the periodic behavior of the temperature is clearly visible.
- In Figure 116(b) observe the phase shift as one moves away from the heat source.

Observe that the behavior of the solution is very different from a wave equation in Section 9.12, even if the setup is comparable.

Figure 116: The propagation of a heat wave
$1=1 ; h=0.1 ; \mathrm{L}=4 ; \mathrm{d}=2$; $\mathrm{H}=2$;
FEMmesh $=$ CreateMeshTriangle('test',...
$[-1,0,-2 ; 0 \quad 0-2 ; 0,-d,-2 ; L,-d,-2 ; L, H,-2 ; 0, H,-2 ; 0, h,-2 ;-1, h,-2], 0.01) ;$
figure(1); FEMtrimesh (FEMmesh)
xlabel('x'); ylabel('y'); axis equal
FEMmesh $=$ MeshUpgrade(FEMmesh,'cubic');
function res $=\mathrm{f}(x y, t)$
res $=\cos (0.2 \star$ pi*t) *ones (size $(x y, 1), 1)$;
res (xy (:, 1)>-0.9) = 0;
endfunction
function res $=u 0(x y)$ res $=$ zeros (size(xy,1),1); endfunction
$\mathrm{m}=1 ; \mathrm{a}=1 ; \mathrm{b} 0=0 ; \mathrm{bx}=\mathrm{by}=0 ; \mathrm{f}=0 ; \mathrm{gn} 1=\mathrm{gn} 2=0$;
tic();
[u,t] = IBVP2D (FEMmesh,m,a,b0,bx,by,'f',0,gn1, gn2,'u0',0,30, [2*60,10]);
$\%$ [u,t] $=\operatorname{IBVP} 2 D \operatorname{sym}(F E M m e s h, m, a, b 0, ' f ', 0, g n 1, g n 2, ' u 0 ', 0,30,[2 \star 60,10])$;
SolverTime = toc()
figure(2); FEMtrimesh (FEMmesh, u(:,end))
xlabel('x'); ylabel('y'); xlim([0,L]);
$\operatorname{umax}=0.3 * \max ([-\min (u(:)), \max (u(:))])$;
figure (3)
if 0% animation
for $j j=1:$ length (t)
FEMtrimesh (FEMmesh, u(:,jj))
xlabel('x'); ylabel('y')
zlim(umax*[-1 1]); caxis(0.3*umax*[$\left.\left.\begin{array}{ll}-1 & 1\end{array}\right]\right)$;
text ($0.8 * L, 0.8 * H, u m a x, s p r i n t f(' t=\% 4.2 f ', t(j j)))$
xlim([0,L])
pause(0.1);
endfor
else
FEMtrimesh (FEMmesh, u(: , end))
xlabel('x'); ylabel('y')
zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
$\operatorname{text}(0.8 * L, 0.8 * H$, umax, sprintf('t $=\% 4.2 f ', t(e n d)))$
endif
$\mathrm{x}=$ linspace(0,L,101); u_line = zeros(size(t,1),size(x,2));
for jj = 1:length(t)
u_line(jj,:) = FEMgriddata(FEMmesh,u(:,jj),x,ones(size(x)));
endfor
figure(4); mesh(x,t,u_line)
xlabel('x'); ylabel('t');
figure(5); contour(x,t,u_line, 0.003*[-1:0.1:+1])
xlabel('x'); ylabel('t');

9.11.5 Static heat equation in a ball in \mathbb{R}^{3}, solved as a 1D problem

The dynamic heat equation in spherical coordinates (r, θ, φ) is given by

$$
\frac{\rho c}{k} \frac{\partial}{\partial t} u=+\Delta u+f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \varphi^{2}}+f .
$$

Examining a static problem, depending on the radius r only leads to the ordinary differential equation

$$
-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)=r^{2} f(t, r) .
$$

At first sight ${ }^{33}$ FEMoctave is not set up to solve problems depending on one variable only, but one may construct solutions whose values do not depend on the second variable, i.e. transform a 1 D problem artificially to a 2 D problem. It has to be pointed out that this is not computationally efficient. Find the efficient 1D approach at the end of the section.

The BVP $-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)=0$ with $u(1)=0$ and $u(R)=1$ is solved by ${ }^{34}$

$$
u(r)=\frac{R}{R-1} \frac{r-1}{r} .
$$

With FEMoctave the solution can be solved by the code below.

- Define the parameters of the system.
- Generate the mesh for $1 \leq r \leq R=3$ and the dummy variable $-\frac{W}{2} \leq y \leq+\frac{W}{2}$. At the upper and lower edge at $y= \pm \frac{W}{2}$ apply the Neumann boundary conditions $\frac{\partial}{\partial n} u=0$. This assures that the solution will depend on r only. At $r=1$ and $r=R$ specify the Dirichlet conditions.
- Define the functions for the parameter $a(r)=r^{2}$ and the Dirichlet conditions $u(1)=0$ and $u(R)=1$.
- Solve the BVP with the help of BVP2Dsym ().
- Display the solutions. To obtain the graphs with one independent variable r use FEMgriddata() along the axis $y=0$ and $1 \leq r \leq R=3$.
- In Figure 117 find the graphs of the solution u, either as function of r and y, or as function of r only.

HeatBall.m

```
    %% solve a static heat problem in a ball, using the radius r only as variable
    R = 3; W = 0.1; N = 10;
    FEMmesh = CreateMeshRect(linspace(1,R,N+1),[-W/2,+W/2],-2,-2,-1,-1);
    %%FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    %%FEMmesh = MeshUpgrade(FEMmesh,'cubic');
    function res = a(r) ; res = r(:,1).^2; endfunction
    function res = gD(r); res = sign(r(:,1)-1); endfunction
    u3D = BVP2Dsym(FEMmesh,'a',0,0,'gD',0,0);
    figure(1); FEMtrimesh(FEMmesh,u3D)
        xlabel('r'); ylabel('dummy'); zlabel('temperature u')
    r = linspace(1,R); u = FEMgriddata(FEMmesh,u3D, r, 0*r);
    u_exact = R/(R-1)* (r-1)./r;
    figure(2); plot(r,u,r,u_exact)
        xlabel('radius r'); ylabel('temperature u')
    legend('u_{FEM}','u_{exact}','location','northwest')
    figure(3); plot(r,u-u_exact)
        xlabel('radius r'); ylabel('u_{FEM}-u_{exact}')
```

For the results in Figure 117 linear elements are used. A simple call of MeshUpgrade () allows to use cubic elements. In Figure 118 find the differences to the exact solution for linear and cubic elements. Observe that the error for cubic elements is considerably smaller.

[^24]

Figure 117: The steady state solution of a heat problem in a ball

Figure 118: The errors of the steady state solution of a heat problem in a ball

The above is a problem with one space variable only. Thus it is advisable to use BVP1D (). Find the results of the code below in Figure 119. Observe the effect of superconvergence

HeatBallRadial.m

```
R1 = 1; R2 = 3; BCleft = 0; BCright = 1;
interval = linspace(R1,R2,11);
[r,u] = BVP1D(interval,@(r)-r.^2,0,0,1,0,BCleft,BCright);
figure(4); plot(r,u,r,R2/(R2-R1)*(r-R1)./r)
                xlabel('radius r'); ylabel( 'temperature u')
        legend('u_{FEM}','u_{exact}','location','northwest')
figure(5); plot(r,u-R2/(R2-R1)*(r-R1)./r,'+-')
        xlabel('radius r'); ylabel( 'temperature u')
        legend('difference','location','southeast')
    r_fine = linspace(R1,R2,501)'; u_fine = pwquadinterp(r,u,r_fine);
    u_exact = R2/(R2-R1)*(r_fine-R1)./r_fine;
figure(6); plot(r_fine,u_fine-u_exact,'k',r,u-R2/(R2-R1)*(r-R1)./r,'b+')
        xlabel('radius r'); ylabel('u_{FEM}-u_{exact}')
        legend('interpolated','at nodes')
```


Figure 119: The steady state solution of a heat problem in a ball with second order elements, solved as true 1D problem

9.11.6 Dynamic heat equation in a cylinder, solved as a 1D problem

Similar to Section 9.11 .5 the dynamic heat equation in cylindical coordinates (r, θ, z) is given by

$$
\frac{\rho c}{k} \frac{\partial}{\partial t} u=+\Delta u+f=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}+f .
$$

Assuming that the solution depends on time t and radius r only and some rescaling leads to the dynamic equation

$$
r \frac{\partial}{\partial t} u(r, t)=\frac{\partial}{\partial r}\left(r \frac{\partial u(r, t)}{\partial r}\right)+r f(r, t) .
$$

Examine a cylinder of radius R and apply time dependent heating in the inner section $r<\frac{R}{2}$ of the cylinder, e.g.

$$
f(r, t)=\left\{\begin{array}{ll}
\sin (t) & \text { for } \quad 0 \leq r<\frac{R}{2} \\
0 & \text { for } \quad \frac{R}{2} \leq r \leq R
\end{array} .\right.
$$

HeatCylinder.m

```
    R = 3; BCleft = [0,0]; BCright = [0,0];
    f = @(r,t) sin}(1*t)*(r<R/2)
    u0 = 0; t0 = 0; t_end = 6*pi; steps = [121,10]; interval = linspace(0,R,21);
    r = @(r)r; solver = 'RK';
    [r,u,t] = IBVP1D(interval,r,r,0,0,r,f,BCleft,BCright,u0,t0,t_end,steps,'solver',solver);
    figure(1); mesh(t,r,u)
        xlabel('time t'); ylabel('radius r'); zlabel('temperature u')
    figure(2); contour(t,r,u,[-0.5:0.1:+0.5])
        xlabel('time t'); ylabel('radius r');
    figure(3); plot(t,u(1,:),t,u(end,:))
        xlabel('time t'); ylabel('temperature u'); xlim([0,max(t)])
        legend('at center r=0','at outer edge r=R','location','south')
```

As results obtain the temperature u as function of time t and radius r, visible in Figures 120 and 121. The periodic oscillations of U are clearly visible. In Figures 121 and 122 observe the smaller amplitudes of u with respect to time at the outer edge $r=R$ and the phase shift.

With the above code HeatCylinder.m it is easy to examine the effects of a different frequency or amplitude in $k \sin (\omega t)$.

Figure 120: The temperatur $u(r, t)$ inside the cylinder

Figure 121: The contours of the temperatur $u(r, t)$ inside the cylinder

Figure 122: The temperatur $u(r, t)$ at the inner $(r=0)$ and outer $(r=R)$ edge

9.12 Wave propagation, Kirchhoff diffraction

In Figure 123 half of a domain $\Omega \subset \mathbb{R}^{2}$ is visible, the lower half is generated by a reflection at the lower edge. For the computation this is taken into account by the symmetry boundary condition $\frac{\partial u}{\partial n}=0$. The wave equation (a special case of the IBVP (6)) to be solved is

$$
\begin{align*}
\frac{\partial^{2}}{\partial t^{2}} u(x, y, t)-\Delta u(x, y, t) & =f(x, y, t) & & \text { for } \quad(x, y, t) \in \Omega \times(0, T] \\
\frac{\partial}{\partial n} u(x, y, t) & =0 & & \text { for } \quad(x, y, t) \in \Gamma \times(0, T] . \tag{94}\\
u(x, y, 0)=\frac{\partial}{\partial t} u(x, y, 0) & =0 & & \text { on } \Omega
\end{align*} .
$$

The function $f(x, y, t)$ equals $\sin (3 \pi t)$ for $x \leq-0.9$ and zero otherwise. Thus there a periodic excitation at the very left end of the appendix for $-1 \leq x \leq-0.9$. The wave speed equals 1 and the appendix (more precise: the two appendices) is a source of waves.

Figure 123: The domain for the wave propagation

Figure 124 shows the solution $u(x, y, 11)$ at time $t=11$.

- The wave speed equals 1 , thus at $t=11$ the first waves are about to arrive at $x=10$ for $y=0$ and at $y=+10$ for $x=0$.
- In the top right section the unperturbed waves generated by the outlet of the appendix at $y=0$ are visible.
- In the top left corner the upward moving waves interfere with the waves reflected at the upper edge at $y=9$.
- At the lower edge at $y=-2$ the waves are reflected leading to interference. The result is identical to the situation of a second source at $y=-4$.
- In the lower part of the figure observe the result of the classical double-slit diffraction pattern by Kirchhoff, see e.g. en.wikipedia.org/wiki/Double-slit_experiment.

Figure 124: Wave propagation, leading to a Kirchhoff diffraction pattern

Observe that the behavior of the solution is very different from a heat equation in 9.11.4, even is the setup is comparable. In the code below you can play with the different parameters and select whether an animation is shown on the screen or the final snapshot only.

WavePropagation.m

```
l = 1; h = 0.1; L = 10; d = 2; H = 9;
FEMmesh = CreateMeshTriangle('test',...
    [-1,0,-2;0 0 -2;0,-d,-2;L,-d,-2; L,H,-2;0,H,-2;0,h,-2;-1,h,-2],0.01);
figure(1); FEMtrimesh(FEMmesh)
            xlabel('x'); ylabel('y'); axis equal
FEMmesh = MeshUpgrade(FEMmesh,'cubic');
function res = f(xy,t)
    res = sin(3*pi*t)*ones(size(xy,1),1);
```

```
    res(xy(:,1)>-0.9) = 0;
endfunction
function res = v0(xy); res = zeros(size(xy,1),1); endfunction
function res = u0(xy) res = zeros(size(xy,1),1); endfunction
m = 1; a = 1; b0 = 0; bx = by = 0; f = 0; gn1 = gn2 = 0;
tic();
[u,t] = I2BVP2D(FEMmesh,m,0,a,b0,bx,by,'f',0,gn1,gn2,'u0','v0',0,11,[56,10]);
SolverTime = toc()
umax = 0.3*max([-min(u(:)),max(u(:))]);
figure(2)
if 0 %% animation
    for jj = 1:length(t)
        FEMtrimesh(FEMmesh,u(:,jj))
        xlabel('x'); ylabel('y')
        zlim(umax*[-1 1]); caxis(0.3*umax*[-1 1]);
        text(0.8*L,0.8*H,umax,sprintf('t = %4.2f',t(jj)))
        view(0,90); xlim([0,L]); ylim([-d,H]);
        pause(0.1);
    endfor
else
    FEMtrimesh(FEMmesh,u(:, end))
    xlabel('x'); ylabel('y')
    zlim(umax*[-1 1]); caxis(0.3*umax*[[-1 1]);
    text(0.8*L,0.8*H,umax,sprintf('t = %4.2f',t(end)))
    view(0,90); xlim([0,L]); ylim([-d,H]);
endif
```


9.13 Sound waves in \mathbb{R}^{2} and \mathbb{R}^{3}

The standard wave equation $\frac{\partial^{2}}{\partial t^{2}} u-\Delta u=0$ can be written in cylindrical

$$
\frac{\partial^{2}}{\partial t^{2}} u(\rho, \phi, z, t)=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}} u+\frac{\partial^{2}}{\partial z^{2}} u
$$

or spherical coordinates

$$
\frac{\partial^{2}}{\partial t^{2}} u(r, \phi, \theta, t)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial u}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} u}{\partial \phi^{2}} .
$$

This allows to reduce some problems to two space dimensions.

9.13.1 A sound wave in \mathbb{R}^{3} with cylindrical coordinates

Assuming that the solution $u(\rho, z, t)$ is independent on ϕ and multiplying the wave equation by ρ arrive at

$$
\begin{equation*}
\rho \frac{\partial^{2}}{\partial t^{2}} u(\rho, z, t)-\frac{\partial}{\partial \rho}\left(\rho \frac{\partial u}{\partial \rho}\right)-\frac{\partial}{\partial z}\left(\rho \frac{\partial u}{\partial z}\right)=0 \tag{95}
\end{equation*}
$$

and thus it is in the from of the general hyperbolic equation (6) and can be solved numerically with I2BVP2D (). On a domain $0 \leq \rho \leq R$ and $0 \leq \theta \leq \pi$ we assume zero initial velocity $\frac{d}{d t} u(\rho, z, 0)=0$ and initial displacement

$$
u(\rho, z, 0)= \begin{cases}1+\cos (10 r) & \text { for } 0 \leq r \leq \frac{\pi}{10} \\ 0 & \text { for } \frac{\pi}{10} \leq r\end{cases}
$$

where we use $r=\sqrt{\rho^{2}+z^{2}}$. The result of solving this initial boundary value problem will be a spherical wave moving with speed 1 and a decaying amplitude. Find the result at time $t=1.75$ in Figure 127. Using an energy argument the amplitude of the wave front is expected to decay like $c \frac{1}{t}$. Using linear regression this is confirmed in Figure 127.

Figure 125: A spherical sound wave at time $t=1.75$, and the decaying amplitude with the best fitting $\frac{c}{t}$

```
    FEMmesh = CreateMeshRect(linspace(0,R,N),linspace(0,H,N),-2,-2,-2,-2);
    FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    function res = u_0(xy)
        r = sqrt(xy(:,1).^^2+xy(:,2) .^2);
        res = 1+cos(10*r); res(r>pi/10) = 0;
    endfunction
    function res = rho(xy,dummy); res = xy(:,1); endfunction;
    function res = v_0(xy) ; res = zeros(size(xy,1),1); endfunction
    tic();
    [u,t] = I2BVP2D(FEMmesh,'rho',0,'rho',0,0,0,0,0,0,0,'u_0','v_0',0,1.75,[100,10]);
    ComputationTime = toc()
    figure(1); clf
    if 0 %% animation
        for jj = 1:length(t)
            FEMtrimesh(FEMmesh,u(:,jj))
            xlabel('rho'); ylabel('z'); zlim([-0.5 0.5]); caxis(0.1*[-0.5,0.5])
            pause(0.1)
        endfor
    else
        FEMtrimesh(FEMmesh,u(:, end))
        xlabel('\rho'); ylabel('z')
    endif
    max_u = max(u) - min(u); t_start = find(t>0.6,1); t_tail = t(t_start:end)';
    [p, ~ ~ ,p_var] = LinearRegression(1./t_tail,max_u(t_start:end)');
    figure(2); plot(t,max_u,t_tail, p./t_tail)
        xlabel('time t'); ylabel ('amplitude'); legend('amplitude','best fit')
```


9.13.2 \quad A sound wave in \mathbb{R}^{2}

In a rectangle $0 \leq x, y \leq R$ solve the standard wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=0
$$

with Neumann boundary conditions $\frac{\partial u}{\partial n}=0$, initial zero velocity and initial displacement

$$
u(x, y, 0)= \begin{cases}1+\cos (10 r) & \text { for } 0 \leq r \leq \frac{\pi}{10} \\ 0 & \text { for } \frac{\pi}{10} \leq r\end{cases}
$$

where we use $r=\sqrt{x^{2}+y^{2}}$. The result of solving this initial boundary value problem will be a circular wave moving with speed 1 and a decaying amplitude. Find the result at time $t=4$ in Figure 126. Using an energy argument the amplitude of the wave front is expected to decay like $c \frac{1}{\sqrt{t}}$. Using linear regression this is confirmed in Figure 126.

Figure 126: A circular sound wave at time $t=4$ and the decaying amplitude with the best fitting $\frac{c}{\sqrt{t}}$

```
R = 4.5; H = 4.5; N = 60;
    FEMmesh = CreateMeshRect (linspace (0,R,N),linspace(0,H,N),-2,-2,-2,-2);
    FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
    function res = u_0 (xy)
        r = sqrt(xy(:,1).^2+xy(:,2).^2);
        res = 1+cos(10*r);
        res(r>pi/10) = 0;
    endfunction
    function res = v_0(xy) ; res = zeros(size(xy,1),1); endfunction
    tic();
    [u,t] = I2BVP2D (FEMmesh,1,0,1,0,0,0,0,0,0,0,'u_0','v_0',0,4,[100,10]);
    ComputationTime = toc()
    figure(3); clf
    if 0 %% animation
        for jj = 1:length(t)
        FEMtrimesh(FEMmesh,u(:,jj))
        xlabel('x'); ylabel('y');
        zlim(0.1*[-2 2]); caxis(0.5*[-2 2])
```

```
        pause(0.1)
        endfor
else
    FEMtrimesh (FEMmesh,u(:, end))
    xlabel('x'); ylabel('y')
endif
max_u = max(u) - min(u); t_start = find(t>1,1); t_tail = t(t_start:end)';
[p,~,~,p_var] = LinearRegression(1./sqrt(t_tail),max_u(t_start:end)');
figure(12); plot(t,max_u,t_tail, p./sqrt(t_tail))
xlabel('time t'); ylabel ('amplitude'); legend('amplitude','best fit')
```


9.13.3 Sound waves in \mathbb{R}^{3} and \mathbb{R}^{2} as 1D problems

- As spherical wave:

If a solution u of the wave equation $\frac{\partial^{2}}{\partial t^{2}} u=\Delta u$ depends on the radius $r=\sqrt{x^{2}+y^{2}+z^{2}}$ only the IBVP is given by

$$
\begin{array}{rlrl}
r^{2} \frac{\partial^{2}}{\partial t^{2}} u(r, t) & =\frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r} u(r, t)\right) & & \text { for } 0<r<R \text { and } t>0 \\
u(r, 0) & & u_{0}(r) & \\
\text { for } 0<r<R \\
\frac{\partial}{\partial t} u(r, 0) & =u_{1}(r) & & \text { for } 0<r<R
\end{array}
$$

For a zero initial velocity $u_{1}(r)=0$ and initial amplitude

$$
u(r, 0)=u_{0}(r)= \begin{cases}1+\cos (10 r) & \text { for } 0 \leq r \leq \frac{\pi}{10} \\ 0 & \text { for } \frac{\pi}{10} \leq r\end{cases}
$$

and Neumann boundary conditions at $r=0$ and $r=R$ the problem can be solved by I2BVP1D () with the code SoundWaveSpherical1D.m below. Find the result in Figure 127. Observe that for advanced time t the solution is equal to zero at the origin $r=0$.

Figure 127: A spherical wave as function of time t and radius $r=\sqrt{x^{2}+y^{2}+z^{2}}$

```
herical1D.m
N = 2*60; R = 3; interval = linspace(0,R,N)';
f_r2 = @(r)r.^2;
u0 = @(r) (1+\operatorname{cos}(10*r)).*(r<pi/10); ul = 0;
w2 = f_r2; w1 = 0; a = f_r2; b = 0; c = 0; d= 1; f = 0;
BCleft = [0,0]; BCright = [0,0];
t0 = 0; tend = 2.5; steps = [100,10];
    [r,u,t] = I2BVP1D(interval,w2,w1,a,b, c,d,f,BCleft,BCright,u0,u1,t0,tend, steps);
```

```
figure(1); mesh(t,r,u); xlabel('time t'); ylabel('radius r'); zlabel('u')
    xlim([min(t),max(t)]); ylim([min(r),max(r)])
[t05,t05_ind] = find(abs(t-0.5)<1e-5); [t1,t1_ind] = find(abs(t-1)<1e-5);
[t15,t15_ind] = find(abs(t-1.5)<1e-5); [t2,t2_ind] = find(abs(t-2)<1e-5);
[t25,t25_ind] = find(abs(t-2.5)<1e-5);
figure(2); plot(r,u(:,1),r,u(:,t05_ind),r,u(:,t1_ind),r,u(:,t15_ind),...
        r,u(:,t2_ind),r,u(:,t25_ind));
    ylabel('amplitude u'); ylim([-0.5,0.7]); xlabel('radius r');
    legend('t=0.0','t=0.5','t=1.0','t=1.5','t=2.0','t=2.5',...
        'location','northeast')
```

- As cylindrical wave:

If a solution u of the wave equation $\frac{\partial^{2}}{\partial t^{2}} u=\Delta u$ depends on the radius $r=\sqrt{x^{2}+y^{2}}$ only the IBVP is given by

$$
\begin{aligned}
r \frac{\partial^{2}}{\partial t^{2}} u(r, t) & =\frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r} u(r, t)\right) & & \text { for } 0<r<R \text { and } t>0 \\
u(r, 0) & =u_{0}(r) & & \text { for } 0<r<R \\
\frac{\partial}{\partial t} u(r, 0) & =u_{1}(r) & & \text { for } 0<r<R
\end{aligned}
$$

For a zero initial velocity $u_{1}(r)=0$ and the same initial amplitude $u_{0}(r)$ as above and Neumann boundary conditions at $r=0$ and $r=R$ the problem can be solved with the code SoundWaveSpherical1D.m below, using I2BVP1D (). Find the result in Figure 128. Observe that for advanced time t the solution is not equal to zero at the origin $r=0$. The amplitudes at $t>0$ are larger than for the above spherical case. This can be derived analytically, using a conservation of energy argument.

Figure 128: A cylindrical wave as function of time t and radius $r=\sqrt{x^{2}+y^{2}}$

```
                                    SoundWaveCylindrical1D.m
N = 2*60; R = 3; interval = linspace(0,R,N)';
f_r = @(r)r;
u0 = @(r) (1+\operatorname{cos}(10*r)).*(r<pi/10); u1 = 0;
w2 = f_r; w1 = 0; a = f_r; b = 0; c = 0; d = 1; f = 0;
BCleft = [0,0]; BCright = [0,0];
t0 = 0; tend = 2.5; steps = [100,10];
[r,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,steps);
figure(1); mesh(t,r,u); xlabel('time t'); ylabel('radius r'); zlabel('u')
    xlim([min(t),max(t)]); ylim([min(r),max(r)])
```

```
[t05,t05_ind] = find(abs(t-0.5)<1e-5); [t1,t1_ind] = find(abs(t-1)<1e-5);
[t15,t15_ind] = find(abs(t-1.5)<1e-5); [t2,t2_ind] = find(abs(t-2)<1e-5);
[t25,t25_ind] = find(abs(t-2.5)<1e-5);
figure(2); plot(r,u(:,1),r,u(:,t05_ind),r,u(:,t1_ind),r,u(:,t15_ind),...
        r,u(:,t2_ind),r,u(:,t25_ind));
    ylabel('amplitude u'); ylim([-0.5,0.75]); xlabel('radius r');
    legend('t=0.0','t=0.5','t=1.0','t=1.5','t=2.0','t=2.5',...
        'location','northeast')
```


9.14 Reflection and transmission of a wave by a change of impedance

A change of impedance will cause an incoming wave to be partially reflected. Examine the initial boundary value problem

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} u(x, t) & =\frac{\partial}{\partial x}\left(a(x) \frac{\partial}{\partial x} u(x, t)\right) & & \text { for } 0<x<12 \text { and } t>0 \\
\frac{\partial}{\partial x} u(0, t)=\frac{\partial}{\partial x} u(12, t) & =0 & & \text { for } t>0 \\
u(x, 0) & =u_{0}(x) & & \text { for } 0<x<12 \\
\frac{\partial}{\partial t} u(x, 0) & =u_{1}(x) & & \text { for } 0<x<12
\end{aligned}
$$

with the discontinuous coefficient $a(x)$

$$
a(x)= \begin{cases}1 & \text { for } 0 \leq x \leq 4 \\ 2 & \text { for } 4<x\end{cases}
$$

and the initial values

$$
u_{0}(x)=\left\{\begin{array}{ll}
\sin (\pi x) & \text { for } 0 \leq x \leq 1 \\
0 & \text { for } 1<x
\end{array} \quad \text { and } \quad u_{1}(x)= \begin{cases}-\pi \cos (\pi x) & \text { for } 0 \leq x \leq 1 \\
0 & \text { for } 1<x\end{cases}\right.
$$

The sin-shaped pulse will travel in the positive x-direction with speed 1 and then at $x=4$ a part will be reflected and traveling back with speed 1 and another part will continue, but with speed $\sqrt{2}$. In Figure 129 find the plot of the surface and in Figure 130 a plot of the solutions at times $t=0,2,4,6$ and 8 , and the contour plot.

Figure 129: The amplitude $u(x, t)$ for a reflected pulse

```
interval = linspace(0,14,301)';
a = @(x) 1+1* (x>4);
b = 0; c = 0; d = 1; f = 0;
```


Figure 130: Waterfall plot and contour plot for the amplitude $u(x, t)$ for a reflected pulse

```
w2 = 1; w1 = 0; ; BCleft = [0,0]; BCright = [0,0];
t0 = 0; tend = 9; steps = [90,100];
u0 = @(x) sin (pi*x).* (x<=1); u1 = @(x)-pi* cos(pi*x) .* (x<=1);
[x,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,steps);
figure(1); mesh(t,x,u); xlabel('time t'); ylabel('position x'); zlabel('u')
    xlim([min(t),max(t)]); ylim([min(x),max(x)]); view([-20,10])
t_ind = [ll 21 41 61 81];
figure(2); H = waterfall(x,t(t_ind),u(:,t_ind)'); view([-177,20])
    xlabel('position x'); zlabel('u')
    set(H, 'edgecolor', [0,0.0,1]); set(H, 'linewidth', 3)
figure(3); contour(t,x,u,[-0.1,0.1]); xlabel('time t'); ylabel('position x');
```


9.15 The Black-Scholes equation of mathematical finance

To determine the value of a stock option the partial differential equation of Black, Scholes and Merton can be used, see [Seyd00], [Seyd11] or [Stew13]. A call option on a stock gives you the right (but not the obligation) to buy the stock at the maturity time T at a given strike price K. If the actual price S is above the strike K, you call the option and gain $S-K$. If the actual price S is below the strike K you let the option expire. For this right to buy you have to pay a fair price V, the value of this call option. To determine the fair price of the option the possible evolution of the value of the stock is taken into account, assuming that it is a Brownian motion. For the Black-Scholes equation use the symbols in Table 17. The Black-Scholes PDE is given by

$$
\begin{equation*}
\frac{\partial}{\partial \tau} V(z, \tau)=\frac{\sigma^{2}}{2} \frac{\partial^{2}}{\partial z^{2}} V(z, \tau)+r \frac{\partial}{\partial z} V(z, \tau)-r_{0} V(z, \tau) \tag{96}
\end{equation*}
$$

with the boundary conditions for a call option

$$
V(S, \tau) \approx 0 \quad \text { for } S \text { very small } \quad \text { and } \quad V(S, \tau) \approx S \quad \text { for } S \text { very large }
$$

leading to

$$
\lim _{z \rightarrow-\infty} V(z, \tau) \approx 0 \quad \text { and } \quad \lim _{z \rightarrow+\infty} \frac{1}{e^{z}} V(z, \tau) \approx 1
$$

To respect the compatibility condition at maturity use $V(t, b)=S-K=e^{b}-K$ for $b \gg 1$. The initial conditions at $\tau=0$ or $t=T$ are

$$
V(z, 0)=\max \{0, S-K\}=\max \left\{0, e^{z}-K\right\}
$$

	Symbol
value of stock	$S=e^{z}$
logarithm of value of stock	$z=\ln (S)$
time to maturity	$0 \leq \tau \leq T$
value of option at time τ at stock value $S=e^{z}$	$V(z, \tau)$
safe interest rate	r_{0}
expected return of stock	r
volatility	σ
strike	K
forward time	$t=T-\tau>0$

Table 17: Variables for the Black-Scholes PDE

This initial boundary value problem can be solved by FEMoctave with the command IBVP1D(). The FEMoctave code in BlackScholesCall.m below generates Figure 131. In this figure of information for a call option with strike $K=120$.

- If the value of the stock is $S=110$ half a year before the maturity time, then the fair value of the call option is $V(110,0.5) \approx 2.1$.
- If the value of the stock is $S=130$ half a year before the maturity time, then the fair value of the call option is $V(130,0.5) \approx 15.4$.
- If the value of the stock is $S=110$ one year before the maturity time, then the fair value of the call option is $V(110,1) \approx 5.6$.
- If the value of the stock is $S=130$ one year before the maturity time, then the fair value of the call option is $V(130,1) \approx 20.5$.

Figure 131: The value V of a European call option as function of time τ and the value of the stock S

BlackScholesCall.m

```
%% script file to solve Black-Scholes for a European call option
K = 120; % strike
r = 0.076; % annual gain of stock
sigma = 0.13; % volatility
r0 =r+sigma^2/2; % safe interest rate
T = 1.0; % maximal time to maturity
```

```
%%%%%%%%%%%%%%%%%%
a = -0.5; b = +0.5; interval = log(K) +linspace(a,b,101)';
BCleft = 0; BCright = exp(max(interval)) -K;
u0 = @(z)max(0, exp (z)-K);
[z,V,tau] = IBVP1D(interval,1,sigma^2/2,-r,+r0,0,0,BCleft,BCright,u0,0,T,[10,10]);
figure(1); mesh(tau,exp(z),V); xlabel('\tau'); ylabel('S'); zlabel('V(S,\tau)')
    xlim([0,T]); ylim([90,135]); zlim([0,30]); caxis([0,25]); view([70,30])
S = linspace(90,140,101)';
V0 = interp1(exp(z),V(:,1),S); Vend = interp1 (exp(z),V(:,end),S);
t_ind = find(abs(tau-T/2)<100*eps); Vmid = interp1(exp(z),V(:,t_ind),S);
figure(2); plot(S,V0,S,Vmid,S,Vend); xlabel('S'); ylabel('V(S,\tau)')
    legend('at \tau=0','at \tau=T/2','at \tau=T','location','northwest')
```

The above results are about a European call option, but there are similar put options. A put option on a stock gives you the right (but not the obligation) to sell the stock at the maturity time T at a given strike price K . If the actual price S is below the strike K you buy on the market at price S and use the put option to sell at price K. You gain $K-S$. If the actual price S is above the strike K you let the option expire. For this right to sell you have to pay a fair price V, the value of this call option. Determine the value of a put option use the Black-Scholes PDE (96) again, but with the boundary conditions

$$
V(S, \tau) \approx K-S \quad \text { for } S \text { very small } \quad \text { and } \quad V(S, \tau) \approx 0 \quad \text { for } S \text { very large. }
$$

To respect the compatibility condition at maturity use $V(t, a)=K-S=K-e^{a}$ for $e^{a} \ll 1$. The initial conditions at $\tau=0$ or $t=T$ are

$$
V(z, 0)=\max \{0, K-S\}=\max \left\{0, K-e^{z}\right\}
$$

This initial boundary value problem can be solved by FEMoctave with the command IBVP1D(). The FEMoctave code in BlackScholesPut.m below generates Figure 132. In this figure read of information for a put option with strike $K=120$.

- If the value of the stock is $S=110$ half a year before the maturity time, then the fair value of the put option is $V(110,0.5) \approx 7.12$.
- If the value of the stock is $S=130$ half a year before the maturity time, then the fair value of the put option is $V(130,0.5) \approx 0.48$.
- If the value of the stock is $S=110$ one year before the maturity time, then the fair value of the put option is $V(110,1) \approx 5.85$.
- If the value of the stock is $S=130$ one year before the maturity time, then the fair value of the put option is $V(130,1) \approx 0.76$.

BlackScholesPut.m

```
%% script file to solve Black-Scholes for a European put option
K = 120; % strike
r = 0.076; % annual gain of stock
sigma = 0.13; % volatility
r0 = r+sigma^2/2; % safe interest rate
T = 1.0; % maximal time to maturity
%%%%%%%%%%%%%%%%
a = -0.5; b = +0.5; interval = log(K) +linspace (a, b,101)';
BCright = 0; BCleft = K-exp(min(interval));
u0 = @(z)max(0,K-exp (z));
[z,V,tau] = IBVP1D(interval,1,sigma^2/2,-r,+r0,0,0,BCleft,BCright,u0,0,T,[10,10]);
figure(1); mesh(tau,exp(z),V); xlabel('\tau'); ylabel('S'); zlabel('V(S,\tau)')
        xlim([0,T]); ylim([100,135]); zlim([0,30]); caxis([0,25]); view([140,30])
S = linspace(100,140,101)';
V0 = interp1(exp (z),V(:,1),S); Vend = interpl(exp(z),V(:,end),S);
t_ind = find(abs(tau-T/2)<100*eps); Vmid = interp1(exp(z),V(:,t_ind),S);
figure(2); plot(S,V0,S,Vmid,S,Vend); xlabel('S'); ylabel('V(S,\tau)')
    legend('at \tau=0','at \tau=T/2','at \tau=T','location','northeast')
```


Figure 132: The value V of a European put option as function of time τ and the value of the stock S

The above codes use an initial boundary value problem to determine the fair price of an European call or put option. For this very simple option this is not necessary. It is possible to express the solution in terms of error function or the cumulative distribution function normcdf () for the normal distribution. The Octave package financial does implement this approach.

```
    pkg load financial
    S = 130; tau = T/2;
    [Call,Put] = blsprice(S,K,r+sigma^2/2,tau,sigma ,0);
    disp(sprintf("For S = %g obtain Call = %g or put = %g at time tau = %g",S,Call,Put,tau))
    -->
    For S = 130 obtain Call = 15.4411 or Put = 0.479557 at time tau = 0.5
```


9.16 Schrödinger's harmonic oscillator

The dynamic Schrödinger equation is given by ${ }^{35}$

$$
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \Psi(x, t) .
$$

Searching for solutions of the form $\Psi(x, t)=f(t) \psi(x)$ leads to

$$
\begin{aligned}
i \hbar \frac{d}{d t} f(t) \psi(x) & =\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] f(t) \psi(x) \\
E=i \hbar \frac{\frac{d}{d t} f(t)}{f(t)} & =\frac{1}{\psi(x)}\left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right] \psi(x) \\
\frac{d}{d t} f(t) & =\frac{E}{i \hbar} f(t) \Longrightarrow f(t)=C \exp \left(-i \frac{E}{\hbar} t\right)
\end{aligned}
$$

With the potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$ for a harmonic oscillator Schrödinger's eigenvalue equation for a harmonic oscillator is given by

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \psi=E \psi \tag{97}
\end{equation*}
$$

[^25]A simple rescaling with $z=\sqrt{\frac{\hbar}{m \omega}} x$ and $u(x):=\psi(z)=\psi\left(\sqrt{\frac{\hbar}{m \omega}} x\right)$ leads to

$$
\begin{aligned}
-\frac{\partial^{2} u(x)}{\partial x^{2}}+x^{2} u(x) & =-\frac{\partial^{2} \psi(z)}{\partial z^{2}} \frac{\hbar}{m \omega}+\frac{m \omega}{\hbar} z^{2} \psi(z) \\
& =\frac{2}{\omega \hbar}\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(z)}{\partial z^{2}}+\frac{m \omega^{2}}{2} z^{2} \psi(z)\right) \\
& =\frac{2}{\omega \hbar} E \psi(z)=\lambda u(x) .
\end{aligned}
$$

Thus the eigenvalue problem to be solved is

$$
-\frac{\partial^{2}}{\partial x^{2}} u(x)+x^{2} u(x)=\lambda u(x) \quad \text { with } \quad u(\pm \infty)=0 .
$$

Then the eigenvalues of the Schrödinger equation (97) are given by $E=\frac{\omega \hbar}{2} \lambda$.
The code below uses the command BVP1Deig() to approximate the first six eigenvalues. The numerical result confirms that the eigenvalues of the Schrödinger equation (97) are given by

$$
E_{n}=\frac{\omega \hbar}{2} \lambda_{n}=\frac{\omega \hbar}{2}(2 n+1) \text { for } n=0,1,2,3,4, \ldots
$$

Figure 133 shows the shape of the corresponding eigenfunctions $u_{n}(x)$. The exact formulas for the eigenfunctions use the physicist's Hermite polynomials and exponential functions ${ }^{36}$.

SchroedingerHarmonic.m

```
x_max = 6; interval = linspace(-x_max,x_max, 100)';
BCleft = 0; BCright = 0;
[x, eVal, eVec] = BVP1Deig(interval,1,0,@(x)x.^2,1,BCleft,BCright,6);
Eigenvalues = eVal'
figure(1); plot(x,eVec(:,1:3)); xlabel('x'); ylabel('u'); xlim([-x_max,+x_max])
        legend('1','2','3')
figure(2); plot(x,eVec(:,4:6)); xlabel('x'); ylabel('u'); xlim([-x_max,+x_max])
        legend('4','5','6')
-->
Eigenvalues = 1.0000 3.0000 5.0000 7.0000 9.0001 11.0001
```


9.17 The EIT forward problem

For a conductivity σ on a bounded domain $\Omega \subset \mathbb{R}^{2}$ consider the PDE

$$
\begin{equation*}
\nabla \cdot(\sigma \nabla u)=0 \quad \text { in } \quad \Omega \subset \mathbb{R}^{2} \tag{98}
\end{equation*}
$$

- Apply a voltage u on the boundary and measure the resulting current density J

$$
J(z)=\sigma(z) \frac{\partial u(z)}{\partial n} \quad \text { for } \quad z \in \partial \Omega
$$

to obtain the Dirichlet to Neumann map

$$
\begin{equation*}
\Lambda_{\sigma}: u \rightarrow \sigma \frac{\partial u}{\partial n} \text { on } \partial \Omega \tag{99}
\end{equation*}
$$

also called voltage to current density map.

$$
\psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega x^{2}}{2 \hbar}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) \quad \text { where } \quad H_{n}(z)=(-1)^{n} e^{\left(z^{2}\right)} \frac{d^{n}}{d x^{n}}\left(e^{\left(-z^{2}\right)}\right)
$$

Figure 133: The first six eigenfunctions of the harmonic Schrödinger operator

- Apply a current density J on the boundary and measure the resulting voltage u. For a static situation the total current into Ω has to be zero, i.e.

$$
\oint_{\partial \Omega} J(s) d s=\oint_{\partial \Omega} \sigma \frac{\partial u}{\partial n} d s=0
$$

to obtain the Neumann to Dirichlet map

$$
\begin{equation*}
\mathcal{R}_{\sigma}: \sigma \frac{\partial u}{\partial n} \rightarrow u \quad \text { on } \quad \partial \Omega \tag{100}
\end{equation*}
$$

also called current density to voltage map.

Figure 134: The conductivity with the conducting "heart" on the left and the insulating "lung" on the right

From either one of these maps it is possible to determine the conductivity σ in the domain. This method is called Electrical Impedance Tomography, or short EIT. For a good, readable introduction consider the book [MuelSilt12] or the article [MuelSilt20]. The Neumann to Dirichlet map \mathcal{R}_{σ} is more reliable to measure, based on less susceptibility to noise. Using FEM examine the forward problem, i.e. apply a known current pattern and determine the resulting voltage u on the boundary. In real live this is performed by measurements. Examine the domain (a very theoretical chest cross section) in Figure 134 with the graph of the conductivity σ shown. On the left observe a simple heart with high conductivity, caused by the blood. On the right observe a section with very low conductivity, caused by the air filled lung. Then two current patterns are examined:

1. A current input at the lower edge of the cross section in Figure 135 and a matching current sink at an angle of approximately 120°. Thus the current is expected to go through the heart, mainly.
2. A similar current input at the lower edge and a matching current sink at an angle of approximately 60°. Thus the current is expected to go through the lung, mainly.
The boundary Γ of the domain Ω is given by

$$
\binom{R_{x} \cos \alpha}{R_{y} \sin \alpha} \quad \text { for } 0 \leq \alpha \leq 2 \pi \text { with } R_{x}=1 \text { and } R_{y}=0.5,
$$

with a conductivity of $\sigma=1$. A simple calculation on the ellipse leads to an arc length of

$$
d s=\sqrt{R_{x}^{2} \sin ^{2} \alpha+R_{y}^{2} \cos ^{2} \alpha} d \alpha
$$

The "heart" is given by

$$
(x+0.5)^{2}+y^{2} \leq 0.25^{2} \quad \text { with conductivity } \quad \sigma=4
$$

and the "lung" is given by

$$
(x-0.4)^{2}+y^{2} \leq 0.35^{2} \quad \text { with conductivity } \quad \sigma=\frac{1}{4} .
$$

Figure 135: Contours of the voltages

FEMoctave is used twice to determine the voltage u in the domain, leading to the level curves in Figure 135. Observe that the two setups are rather similar, but not exactly symmetrical.

Since the normal derivative $\frac{\partial u}{\partial n}$ on all of the boundary is specified, the BVP does not have a unique solution. An arbitrary constant can be added and consequently the standard FEMoctave code will fail. If the additional condition

$$
u_{\text {mean }}=\frac{1}{\operatorname{area}(\Omega)} \iint_{\Omega} u d A=0
$$

is required, the problem has a unique solution again, and there is hope to obtain a good aproximation by FEM. To get around this problem use the open and free source code of FEMoctave and modify the solver in BVP2Dsym.m. Add an additional equation

$$
\sum_{i=1}^{n} u_{i}=0
$$

by one additional line, containing $n=\operatorname{size}(A, 1) ; A(n+1,:)=1$; $b(n+1)=0$; . It is a good idea to rename the function, e.g. to BVP2DsymMean.m.

BVP2DsymMean.m

```
function u = BVP2DsymMean(Mesh,a,b0,f,gD,gN1,gN2)
    if nargin ~= 7 print_usage(); endif
    switch Mesh.type
            case 'linear' %% first order elements
            [A,b] = FEMEquation (Mesh,a,b0,0,0,f,gD,gN1,gN2); % compute with compiled code
            case 'quadratic' %% second order elements
            [A,b] = FEMEquationQuad(Mesh,a,b0,0,0,f,gD,gN1,gN2);
            case 'cubic' %% third order elements
            [A,b] = FEMEquationCubic(Mesh,a,b0,0,0,f,gD,gN1,gN2); % compute with compiled code
    endswitch
    %% add the zero mean condition
    n = size(A,1); A(n+1,:) = 1; b (n+1) = 0;
    u = FEMSolve(Mesh,A,b,gD); %% solve the linear system
```

```
endfunction
```

```
endfunction
```

Using the current density $\vec{J}=-\sigma \nabla u$ the vector fields in Figure 136 can be determined. With FEMgriddata() determine ∇u and then multiply by the conductivity σ to obtain the current density \vec{J}. Using the same starting points along $y=-0.4$ a few streamlines are shown.

- In Figure 136(a) the current takes the path of least resistance and is attracted by the highly conducting "heart".
- In Figure 136(b) the current tries to avoid the "lung" section with the low conductivity.

If the conductivity would be constant in all of the domain Ω, then the two graphics in Figure 136 would be perfectly symmetric.

Figure 136: The vector field for the current density \vec{J} and a few streamlines

As a reference the situation of constant $\sigma=1$ is computed too and the resulting voltages on the boundary are shown in Figure 137. The deviations from the reference on the boundary Γ contain information about the conductivity inside of the domain Ω. The deviations from the reference are shown in Figure 138. Many of those "measurements" allow to determine the Neumann to Dirichlet map, leading to the conductivity σ by an EIT algorithm.

EITforward.m

```
global Rx Ry dalpha my_angle
N}=2*64; %% number of angle segment
alpha = linspace(0,2*pi* (N-1)/N,N)'; Rx = 1; Ry = 0.5;
dalpha = 2*(alpha(2)-alpha(1));
x = Rx*Cos(alpha); y = Ry*sin(alpha);
BC = -2*ones(size(x));
```


Figure 137: Voltage along the boundary

Figure 138: Differences of the voltage and the reference voltage

```
my_angle = 120 %% select the configuration, use 60 or 120
function res = sigma(xy,dummy) %% the conductivity
    x = xy(:,1); y = xy(:,2);
    res = ones(size(x));
    res((x+0.5).^2+y.^2<=0.25^2) *= 4 ; %% heart on the left
    res((x-0.4).^2+y.^2<=0.35^2) *= 1/4; %% lung on the right
endfunction
FEMmesh = CreateMeshTriangle('EIT',[x,y,BC],0.003);
FEMmesh = MeshUpgrade(FEMmesh,'cubic');
figure(1); FEMtrimesh(FEMmesh,sigma(FEMmesh.nodes)); %% show the conductivity
xlabel('x'); ylabel('y'); zlabel('\sigma'); view(20,50)
function res = flux_n(xy) %% define the current density on the boundary
    global dalpha my_angle Rx Ry
    alpha = atan2(xy(:,2)/Ry,xy(:,1)/Rx); %% assure correct angle
    res = zeros(size(alpha));
    res(abs(alpha+pi/2) < dalpha) = -1;
    switch my_angle
            case 60
                res(abs(alpha-pi/3) < dalpha) = +1;
            case 120
                res(abs(alpha-pi*2/3) < dalpha) = +1;
    endswitch
    res = res./sqrt(Rx^2*sin(alpha).^2 + Ry^2*\operatorname{cos(alpha).^2);%% adjust for the arc length}
endfunction
u_0 = BVP2DsymMean(FEMmesh, 1 ,0,0,0,'flux_n',0); %% the reference result
u = BVP2DsymMean(FEMmesh,'sigma',0,0,0,'flux_n',0); %% the actual result
figure(2); FEMtrimesh(FEMmesh,u) %% show the solution
    xlabel('x'); ylabel('y');
figure(3); clf; FEMtricontour(FEMmesh,u,41) %% show the contour levels
    hold on;
    plot([x;x(1)],[y;y(1)],'k'); %% add the boundary
    hold off; xlabel('x'); ylabel('y'); axis equal
u_boundary = FEMgriddata(FEMmesh,u, x,y);
u_0_boundary = FEMgriddata(FEMmesh,u_0,x,y);
figure(4); plot(alpha*180/pi,u_boundary,alpha*180/pi,u_0_boundary)
    xlabel('angle [deg]'); ylabel('u'); xlim([0,360])
    legend('true','reference') %% show the voltages on the boundary
figure(5); plot(alpha*180/pi,u_boundary-u_0_boundary)
    xlabel('angle [deg]'); ylabel('u-u_0'); xlim([0,360])
    legend('true-reference') %% show the difference
%% create the vector field for the current density
[xx,yy] = meshgrid(linspace(-Rx,Rx,21),linspace(-0.8*Ry,0.8*Ry,21));
[ui,uxi,uyi] = FEMgriddata(FEMmesh,u,xx,yy);
conductivity = reshape(sigma([xx(:),yy(:)]),size(xx));
uxi = conductivity.*uxi; uyi = conductivity.*uyi;
figure(6); quiver(xx,yy,uxi,uyi,2) %%% show the vector field
    xlabel('x'); ylabel('y')
    hold on; plot([x;x(1)],[y;y(1)],'k'); hold off%% add the boundary
%% create and show the streamlines
streamline(xx,yy,uxi,uyi, [-0.3 -0.2,-0.1,0,0.1,0.2 0.3],-0.8*Ry*ones (1, 7));
```

Since the condition

$$
\oint_{\partial \Omega} J(s) d s=\oint_{\partial \Omega} \sigma \frac{\partial u}{\partial n} d s=0
$$

is critical it is a good idea to examine the numerical approximation of the flux through the boundary. For this use the nornal vector

$$
\vec{n}=\frac{1}{\sqrt{R_{x}^{2} \sin ^{2} \alpha+R_{y}^{2} \cos ^{2} \alpha}}\binom{R_{y} \cos \alpha}{R_{x} \sin \alpha}
$$

and then integrate over the segements where the flux is not zero

$$
\int_{\text {section }}\langle\vec{n}, \nabla u\rangle d s .
$$

To evaluate this numerically use FEMgriddata () to determine the values of the gradient ($\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$) and then trapz () to perform a numerical integration. Observe that along the boundary the length segment is given by

$$
d s=\sqrt{R_{x}^{2} \sin ^{2} \alpha+R_{y}^{2} \cos ^{2} \alpha} d \phi
$$

The code below leads to in inlet flux of ≈ 0.1975 and to outlet fluxes at either ≈ 0.1980 at 60° or ≈ 0.1964 at 120°.

Figure 139: Flux density at inlet and outlet

```
%% script to analyze the flux on the boundary
%% assumes that EITforward.m was run before
Angle = -90 % use 60, 120 or -90
Angle = deg2rad(Angle);
Section = pi/20; phi = Angle + linspace(-Section,+Section,100)';
x_b = 0.999*Rx*Cos(phi); y_b = 0.999*Ry*sin(phi);
[u_boundary,ux_boundary,uy_boundary] = FEMgriddata(FEMmesh,u,x_b,y_b);
ds = sqrt(Rx^2*sin(phi).^2 + Ry^2*\operatorname{cos(phi). ^2);}
n = [Ry*cos(phi)./ds, Rx*sin(phi)./ds];
    flux = (ux_boundary.*n(:,1) + uy__boundary.*n(:,2));
    figure(1); plot(rad2deg(phi),flux)
        xlabel('\phi [deg]'); ylabel('flux density')
TotalFlux = trapz(phi,flux.*ds)
```


9.18 Stretching of a beam

A beam with variable cross section $A(x)$ is stretched by a force F applied to the right endpoint at $x=L$. With Young's modulus of elasticity E the boundary value problem to be solved is

$$
\frac{d}{d x}\left(E A(x) \frac{d u(x)}{d x}\right)=F \quad \text { with } \quad u(0)=0 \quad \text { and } \quad E A(L) \frac{d u(L)}{d x}=F .
$$

The solution is the displacement function $u(x)$. The resulting strain is given by the first derivative $\frac{d u(x)}{d x}$. For a beam with a thinner midsection examine

$$
E A(x)=\frac{1}{2}\left(2-\sin \left(\frac{x \pi}{L}\right)\right)
$$

In Figure 140 find the displacement $u(x)$ and the resulting strain $\frac{d u(x)}{d x}$, determined by 10 elements of equal length. It is clearly visible that the strain $u^{\prime}(x)$ is a piece-wise linear function. Thus just evaluating $u^{\prime}(x)$ at more grid points will not improve the appearance of the solution. Rerunning the code below with more elements (e.g. $\mathrm{N}=50$) will improve the situation.

Figure 140: Displacement and strain for a beam with thinner midsection

BeamStretch.m

```
    L = 3; F = 0.2; N = 10; EA = @(x) (2-sin(x/L*pi))/2;
    [x,u] = BVP1D(linspace(0,L,N),EA,0,0,0,0,0,[F,0]);
    figure(1); plot(x,u)
        xlabel('position x'); ylabel('displacement u')
    [u2,strain] = pwquadinterp(x,u,x); %% evaluation at nodes
    x_fine = linspace(0,L,501);
    [u_fine,strain_fine] = pwquadinterp(x,u,x_fine); %% interpolation to a fine grid
    figure(2); plot(x,strain,x_fine,strain_fine)
        xlabel('position x'); ylabel('strain du/dx')
        legend('at nodes', 'fine grid')
```


9.19 How a Fata Morgana is appearing

In calm weather, a layer of significantly warmer air may rest over colder dense air. Thus the density of the air and the index of refraction decrease as one moves up. This leads to a higher speed of light at higher altitude u. As very simple assumption use the linear approximation for the index of refraction $n(u)=1-\alpha u$ for some postive constant α. Examine the height $u(x)$ of a ray of light as function of the position $a \leq x \leq b$. Use

$$
\frac{d s}{d t}=v(u)=\frac{1}{n(u)}=\frac{1}{1-\alpha u}
$$

for the speed of light. With the arc length $d s=\sqrt{1+\left(u^{\prime}(x)\right)^{2}} d x$ determine the time of flight $T(u)$ for a path $u(x)$ of the ray from $x=a$ to $x=b$.

$$
T(u)=\int_{a}^{b} \frac{1}{v(x)} \frac{d s}{d x} d x=\int_{a}^{b}\left(1-\alpha u(x) \sqrt{1+\left(u^{\prime}(x)\right)^{2}} d x=\int_{a}^{b} g\left(u(x), u^{\prime}(x)\right) d x\right.
$$

Based on Fermat's principle the shape $u(x)$ of the ray is such that the time of flight is minimal. The Euler-Lagrange equation of the calculus of variations lead to an ODE describing this situation. Use the partial derivatives

$$
\frac{\partial}{\partial u} g\left(u, u^{\prime}\right)=-\alpha \sqrt{1+\left(u^{\prime}\right)^{2}} \quad \text { and } \quad \frac{\partial}{\partial u^{\prime}} g\left(u, u^{\prime}\right)=(1-\alpha u) \frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}
$$

to conclude

$$
\begin{aligned}
-\frac{d}{d x} \frac{\partial}{\partial u^{\prime}} g\left(u, u^{\prime}\right) & =-\frac{\partial}{\partial u} g\left(u, u^{\prime}\right) \\
-\frac{d}{d x}\left(\frac{1-\alpha u}{\sqrt{1+\left(u^{\prime}\right)^{2}}} u^{\prime}\right) & =+\alpha \sqrt{1+\left(u^{\prime}\right)^{2}}
\end{aligned}
$$

To use the algorithm of BVP1DNL () work with $a\left(u, u^{\prime}\right)=\frac{1-\alpha u}{\sqrt{1+\left(u^{\prime}\right)^{2}}}$ and

$$
f\left(u, u^{\prime}\right)=\alpha \sqrt{1+\left(u^{\prime}\right)^{2}} \quad, \quad \frac{\partial}{\partial u} f\left(u, u^{\prime}\right)=0 \quad \text { and } \quad \frac{\partial}{\partial u^{\prime}} f\left(u, u^{\prime}\right)=\alpha \frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}
$$

Then find the ray connecting the points $(0,0$ and $(1,0)$ by the code FataMorgana.m below, leading to Figure 141 .

Figure 141: Fata Morgana: the ray of light for a point on the ground

```
\square_ FataMorgana.m
    Interval = linspace(0,1,21)';
    alpha = 0.2;
    f = {@(x,u,v)alpha*sqrt(1+v.^2),
        @ (x,u,v) 0*u;
        @(x,u,v) alpha*v./sqrt(1+v.^2) };
    a = @(x,u,v)(1+alpha*u)./sqrt(1+v.^ 2);
    [x,u] = BVP1DNL (Interval,a,0,0,1,f,0,0,0);
    figure(1); plot(x,u,'b');
```

To find out where an object of height 0.05 at $x=1$ is appearing use the same idea to find the rays form $(0,0)$ to $(0,0)$ and $(0,05)$. Determine the slopes at $x=0$ and then draw the tangent lines of the rays. The resulting Figure 142 shows the object floating in the air. This is the physics behind a Fata Morgana, see https://en.wikipedia.org/wiki/Fata_Morgana_(mirage).

FataMorgana.m

```
    du = FEM1DEvaluateDu(x,u); du1 = du(1);
    [x,u2] = BVP1DNL(Interval,a,0,0,1,f,0,0.05,0);
    du = FEM1DEvaluateDu(x,u2); du2 = du(1);
    figure(2); plot(x,u,'b',[0,1],[0,du1],'g',x,u2,'b',[0,1],[0,du2],'g')
        legend('true','visual','location','northwest')
```


Figure 142: Fata Morgana: how the image of two points appear to the observer

9.20 Keller's nonlinear boundary value problems

In [Kell92, p. 317] the boundary value problem

$$
-u^{\prime \prime}(x)=-e^{u(x)} \quad \text { with } \quad u(-1)=u(1)=0
$$

is examined. The exact solution is given by

$$
u(x)=\ln \left(\frac{c^{2}}{1+\cos (c x)}\right)
$$

where the value of the constant c is determined as solution of the equation $c^{2}=1+\cos c$. Use Newton's method to find $c \approx 1.1765019$. There are two possible approaches to solve this nonlinear boundary value problem, partial successive substitution or Newton's method. The command BVP1DNL () is based on Newton's method.

9.20.1 Partial successive substitution

Start with an initial guess, e.g. $u_{0}(x)=0$, leading to $-\exp \left(u_{0}\right)=-1$. Then use the iteration

$$
-u_{n+1}^{\prime \prime}(x)=-e^{u_{n}(x)} .
$$

The coding in FEMoctave is rather straightforward, shown in the code below. Find the solution by (partial) successive substitution in Figure 143(a) and the difference to the exact solution after 5 iterations in Figure 143(b).

```
Meller.m
    %% successive substitution
    N = 51; interval = linspace(-1,1,N)';
    c = 1.176501939901833; %% or use the solver
    opt.TolFun = 1e-15; opt.TolX = 1e-15; c = fsolve(@(c) 1+cos(c)-c^2,1,opt);
    [x,u] = BVP1D(interval,1,0,0,1,-1,0,0);
    u_exact = log(c^2./(1+cos(c*x)));
    figure(1); plot(x,u); xlabel('x'); ylabel('u_1')
    for jj = 1:4;
        [x,u] = BVP1D(interval,1,0,0,1,-exp(u),0,0);
    figure(2); plot(x,u,x,u_exact); xlabel('x'); ylabel('u')
                legend('FEM','exact', 'location','north')
    figure(3); plot(x,u-u_exact); xlabel('x'); ylabel('u')
                legend('FEM-exact')
    pause(0.2)
    endfor
```


9.20.2 Newton's method

With an approximate initial guess $u_{0}(x)$ (start with $u_{0}(x)=0$) search a sequence of new solutions of the form $u_{n+1}(x)=$ $u_{n}(x)+\phi(x)$. Use the idea of a linear approximation to solve $0=f\left(x_{n}+\phi\right) \approx f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right) \phi$ to find $\phi=-\frac{f(x)}{f^{\prime}(x)}$,

Figure 143: The solution of Keller's boundary value problem and the difference of the approximations by successive substitution and Newton's method
leading to the usual iteration formula $x_{n+1}=x_{n}+\phi=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$. Examine the linear boundary value problem for the unknown function $\phi(x)$. The Taylor approximation $e^{u+\phi} \approx e^{u}+e^{u} \phi=e^{u}(1+\phi)$ leads to the BVP for $\phi(x)$.

$$
\begin{aligned}
-u_{n}^{\prime \prime}(x)-\phi^{\prime \prime}(x) & =-e^{u_{n}(x)+\phi(x)} \approx-e^{u_{n}(x)}(1+\phi(x)) \\
-\phi^{\prime \prime}(x)+e^{u_{n}(x)} \phi(x) & =u_{n}^{\prime \prime}(x)-e^{u_{n}(x)} \quad \text { with } \quad \phi(-1)=\phi(1)=0
\end{aligned}
$$

Use [du, ddu] = FEM1DEvaluateDu(xn, u) to find the values of the first and second derivatives at the nodes. The coefficient $e^{u_{n}(x)}$ of the term $\phi(x)$ depends on the previous solution $u_{n}(x)$ and its values have to be known at the Gauss integration points. Find the Gauss points with the help of the function FEM1DGaussPoints() and use uGauss=pwquadinterp (xn,u,xGauss) to evaluate $u_{n}(x)$ at the Gauss points. Find the solution by Newton's method in Figure 143(a) and the difference to the exact solution after 5 iterations in Figure 143(c).

```
%% Newton's method
N = 51; interval = linspace(-1,1,N)';
c = 1.176501939901833; %% or use the solver
opt.TolFun = 1e-15; opt.TolX = 1e-15; c = fsolve(@(c) 1+cos(c)-c^2,1,opt);
[x,u] = BVP1D(interval,1,0,0,1,-1,0,0);
u_exact = log(c^2./(1+cos(c*x)));
figure(1); plot(x,u); xlabel('x'); ylabel('u_1')
xGauss = FEM1DGaussPoints(x);
for jj = 1:4
    [du,ddu] = FEM1DEvaluateDu(x,u);
    RHS = + ddu - exp(u);
    uGauss = pwquadinterp(x,u,xGauss); %% evaluate u at Gauss points
    u_coeff = exp(uGauss);
    [x,phi] = BVP1D(interval,1,0,u_coeff,1,RHS,0,0);
    disp(sprintf('max(abs(phi)) = %g, max(abs(RHS)) = %g',max(abs(phi)), max(abs(RHS))))
    u = u + phi;
    figure(2); plot(x,u,x,u_exact); xlabel('x'); ylabel('u')
                        legend('FEM','exact','location','north')
    figure(3); plot(x,u-u_exact); xlabel('x'); ylabel('u')
                        legend('FEM-exact')
    pause(0.2)
endfor
```


9.20.3 Using BVP 1DNL ()

Newton's method can be used with very few lines of code. To use BVP1DNL () provide the partial derivative

$$
\frac{\partial}{\partial u} f(x, u)=\frac{\partial}{\partial u}(-\exp (u))=-\exp (u)
$$

and start with the naive initial guess $u_{0}(x)=0$. The graphical result and the information provided in the return variable inform indicate that the algorithm converged with 4 iterations and the size of the last correction was of the order $1.4 \cdot 10^{-6}$. The RMS of the error is approximately $3 \cdot 10^{-8}$, only computable since we know the exact solution. The graph shows an actual maximal error of $\approx 2 \cdot 10^{-9}$.

Keller.m

```
%% use BVP1DNL
N = 51; interval = linspace(-1,1,N)';
c = 1.176501939901833; %% or use the solver
opt.TolFun = 1e-15; opt.TolX = 1e-15; c = fsolve(@(c) 1+cos(c)-c^2,1,opt);
f = {@(x,u)-exp(u), @(x,u)-exp (u)};
[x,u,inform] = BVP1DNL(interval, 1,0,0,1,f,0,0,0,'Tol',1e-5,'display','iter');
u_exact = log(c^2./(1+cos(c*x)));
figure(2); plot(x,u,x,u_exact); xlabel('x'); ylabel('u')
    legend('FEM','exact','location','north')
figure(3); plot(x,u-u_exact); xlabel('x'); ylabel('u')
    legend('FEM-exact')
inform
RMS_difference = norm(u-u_exact)/sqrt(length(u))
-->
iteration 1, RMS (correction) = 9.323090e-02, RMS (phi) = 9.468330e-02
iteration 2, RMS(correction) = 3.300574e-04, RMS (phi) = 3.300764e-04
iteration 3, RMS (correction) = 4.332861e-09, RMS (phi) = 4.332859e-09
inform = scalar structure containing the fields:
        info = 1
        iter = 3
        AbsError = 4.3329e-09
RMS_difference = 1.6647e-09
```


9.20.4 A similar problem with multiple solutions

At first sight the nonlinear boundary value problem

$$
-u^{\prime \prime}(x)=\frac{1}{2} e^{u(x)} \quad \text { with } \quad u(-1)=u(1)=0
$$

found in [Kell92, p. 150] is very similar to the above. But it turns out ${ }^{37}$ that this problem has two solutions, one with $u(0) \approx 0.3$ and another solution with $u(0) \approx 3$. By selecting appropriate initial functions $u_{0}(x)=u_{0}\left(1-x^{2}\right)$ the algorithm used in BVP1DNL () will determine either one of these two solutions.

```
y01 = 0.3 %% more accurate y0 = 0.3290;
y02 = 3.0 %% more accurate y0 = 2.8955;
RHS = {@(x,y)0.5*exp (y), @ (x,y) 0.5*exp (y) };
interval = linspace(-1,1,21);
BCleft = 0; BCright = 0;
[x1,y1] = BVP1DNL(interval,1,0,0,1,RHS,BCleft,BCright,@(x)y01*(1-x.^^2),
    'MaxIter',30,'Display','iter');
[x2,y2] = BVP1DNL(interval,1,0,0,1,RHS,BCleft,BCright,@(x)y02* (1-x.^ 2),
    'MaxIter',30,'Display','iter');
figure(1); plot(x1,y1,x2,y2); xlabel('x'); ylabel('y(x)')
```

[^26]

Figure 144: Two solutions of $-u^{\prime \prime}(x)=\frac{1}{2} \exp (u(x))$ with $u(-1)=u(+1)=0$

9.21 A mathematical pendulum problem

With what angular velocity does a pendulum have to start at the lowest point with angle $u(0)=0$ to reach the maximal angle at time $t=T$? What is the resulting maximal angle? A boundary value problem leading to the answers is

$$
\begin{equation*}
\ddot{u}(t)=-\sin (u(t)) \quad \text { with } \quad u(0)=0 \quad \text { and } \quad \frac{d}{d t} u(T)=0 . \tag{101}
\end{equation*}
$$

This BVP always has the trivial solution $u(t)=0$. Since $\sin (u) \leq u$ for $u \geq 0$ the acceleration for the mathematical pendulum is smaller than the one for the physical pendulum $\ddot{u}(t)=-u(t)$. The solution of the physical pendulum is $u(t)=c \sin (t)$. As consequence require $T>\frac{\pi}{2}$ to obtain a nontrivial solution for the BVP (101). Conservation of energy ${ }^{38}$ requires

$$
\text { initial kinetic energy }=\frac{1}{2}(\dot{u}(0))^{2}=(1-\cos (u(T))=\text { final potential energy. }
$$

The code Pendulum.m shown below solves the BVP (101) for $T=2$ and the conservation of energy is verified.

Pendulum.m

```
N = 1001; interval = linspace(0,T,N)';
T = 2.0; BCleft = 0; BCright = [0,0];
f = {@(t,u)\operatorname{sin}(u), @(t,u)\operatorname{cos}(u)};
[t,u] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,@(t)t,
    'Display','off','Tol',1e-8);
figure(1); plot(t,u); xlabel('time t'); ylabel('angle u')
v = FEM1DEvaluateDu(t,u);
disp(sprintf('For T = %g: initial angular velocity v(0) = %g, maximal angle u(T) = %g',
    T,v(1),u(end)))
KineticEnergy = v(1)^2/2; Potential = 1-cos(u(end));
disp(sprintf('Kinetic energy at t=0: %g, potential energy at t=T: %g, difference: %g',
    KineticEnergy,Potential,KineticEnergy-Potential))
```

[^27]The code in Pendulum.m evaluates this integral.

```
-->
For T = 2: initial angular velocity v(0) = 1.60481, maximal angle u(T) = 1.86263
Kinetic energy at t=0: 1.2877, potential energy at t=T: 1.2877, difference: 8.5831e-07
```


9.22 A BVP with multiple nonlinear contributions

In [AtkiHan09] find Exercise 5.4.1 on page 241, a nonlinear boundary value problem with multiple nonlinear contributions.

$$
\begin{aligned}
-u^{\prime \prime}(x)+u^{\prime}(x) u(x)+u^{3}(x) & =e^{x} \\
u(0)=1 \quad, \quad u^{\prime}(2) & =2
\end{aligned}
$$

A first attempt at solving this BVP with BVP1DNL () directly will fail. The algorithm does not converge, caused by the naive initial guess $u_{0}(x)=0$, which should be close to the solution. It turns out that the contribution $u^{3}(x)$ leads to the blowup of the Newton algorithm. One possible way to solve this BVP is to parameterize the critical contribution. Introduce a parameter $0 \leq \alpha \leq 1$ and examine

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f_{\alpha}\left(x, u(x), u^{\prime}(x)\right):=-u^{\prime}(x) u(x)-\alpha u^{3}(x)+e^{x} \\
f_{\alpha}\left(x, u, u^{\prime}\right) & =-u^{\prime} u-\alpha u^{3}+e^{x} \\
\frac{\partial}{\partial u} f_{\alpha}\left(x, u, u^{\prime}\right) & =-u^{\prime}-\alpha 3 u^{2} \\
\frac{\partial}{\partial u^{\prime}} f_{\alpha}\left(x, u, u^{\prime}\right) & =-u
\end{aligned}
$$

Then increase the value of α step by step from 0 to 1 . This approach will generate a reliable solution. Find the result from the code AtkinsonHan.m below in Figure 145.

Figure 145: A BVP with multiple nonlinear contributions

AtkinsonHan.m

```
N = 501; interval = linspace(0,1,N)'; BCleft = 1; BCright = [2,0];
u = 0;
figure(2); clf; hold on; box on
for alpha = linspace(0,1,5)
    alpha
    f = {@(x,u,du)-u.*du - alpha*u.^3 + exp(x),@(x,u,du)-du -alpha*3*u.^2 ,@(x,u,du)-u};
    [x,u,inform] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,u,
                'Display','iter');
    plot(x,u) ;xlabel('x'); ylabel('u(x)')
    pause(0.1)
endfor
```

```
legend('\alpha \(=0.00^{\prime}, ' \backslash a l p h a=0.25^{\prime}, ' \backslash a l p h a=0.50^{\prime}, ' \backslash a l p h a=0.75^{\prime}, ' \backslash a l p h a=1.00^{\prime}\),
    'location','northwest')
figure(1); plot(x,u) ; xlabel('x'); ylabel('u(x)')
```

The output generated by the above code nicely illustrates the quadratic convergence of Newton's algorithm, i.e. the number of non-changing digits is approximately doubled at each step, after an initial search.

```
alpha = 0
iteration 1, RMS(correction) = 1.271951e+00, RMS (phi) = 9.217815e-01
iteration 2, RMS (correction) = 1.859463e-01, RMS (phi) = 1.978042e-01
iteration 3, RMS (correction) = 5.875778e-03, RMS (phi) = 5.886006e-03
iteration 4, RMS (correction) = 5.074170e-06, RMS (phi) = 5.074184e-06
alpha = 0.2500
iteration 1, RMS(correction) = 2.750162e-01, RMS (phi) = 5.594625e-01
iteration 2, RMS(correction) = 1.661185e-01, RMS (phi) = 2.075803e-01
iteration 3, RMS (correction) = 2.746584e-02, RMS (phi) = 2.827483e-02
iteration 4, RMS (correction) = 5.465197e-04, RMS (phi) = 5.468251e-04
iteration 5, RMS(correction) = 2.064430e-07, RMS (phi) = 2.064488e-07
alpha = 0.5000
iteration 1, RMS (correction) = 1.734538e-01, RMS (phi) = 4.004352e-01
iteration 2, RMS(correction) = 1.315342e-01, RMS (phi) = 1.798543e-01
iteration 3, RMS (correction) = 3.380237e-02, RMS (phi) = 3.581552e-02
iteration 4, RMS (correction) = 1.465643e-03, RMS (phi) = 1.469075e-03
iteration 5, RMS (correction) = 2.503296e-06, RMS (phi) = 2.503313e-06
alpha = 0.7500
iteration 1, RMS (correction) = 1.283952e-01, RMS (phi) = 3.183453e-01
iteration 2, RMS (correction) = 1.084098e-01, RMS (phi) = 1.567254e-01
iteration 3, RMS (correction) = 3.454831e-02, RMS (phi) = 3.743495e-02
iteration 4, RMS (correction) = 2.185036e-03, RMS (phi) = 2.195112e-03
iteration 5, RMS (correction) = 7.654415e-06, RMS (phi) = 7.654543e-06
alpha = 1
iteration 1, RMS(correction) = 1.031818e-01, RMS (phi) = 2.665817e-01
iteration 2, RMS(correction) = 9.226889e-02, RMS (phi) = 1.381142e-01
iteration 3, RMS (correction) = 3.318699e-02, RMS (phi) = 3.653564e-02
iteration 4, RMS (correction) = 2.598465e-03, RMS (phi) = 2.615903e-03
iteration 5, RMS (correction) = 1.360277e-05, RMS (phi) = 1.360325e-05
iteration 6, RMS (correction) = 3.689710e-10, RMS (phi) = 3.715615e-10
```

Another approach to find good initial values is the parametrization

$$
f_{\alpha}\left(x, u, u^{\prime}\right)=\alpha\left(-u^{\prime} u-u^{3}\right)+e^{x} .
$$

With smaller steps for $0 \leq \alpha \leq 1$ this parametrization leads to the same final result.

9.23 Fisher's equation

Examine Fisher's equation (named after statistician and biologist Ronald Fisher), also known as the Kolmogorov-PetrovskyPiskunov equation, or shorter Fisher-KPP equation.

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)-\frac{\partial^{2}}{\partial x^{2}} u(x, t)=f(u(x, t))=u(x, t)(1-u(x, t)) \quad \text { with } u(-\infty, t)=1 \text { and } u(+\infty, t)=0 \tag{102}
\end{equation*}
$$

This initial boundary value problem can exhibit traveling wave solutions that switch between the two equilibrium states given by $f(u)=0$, i.e. at $u=0$ and $u=1$. Such equations occur, e.g., in ecology, physiology, combustion, crystallization, plasma physics, and in general phase transition problems.

9.23.1 A travelling wave solution

When searching for a traveling wave solution with speed c use $u(x, t)=u(x-c t)$ and the above partial differential equation turns into an ordinary differential equation.

$$
\begin{equation*}
-c u^{\prime}(x)-u^{\prime \prime}(x)=u(x)(1-u(x)) \quad \text { with } u(-\infty)=1 \text { and } u(+\infty)=0 \tag{103}
\end{equation*}
$$

This ODE does not have a unique solution. Each translation $u(x+D)$ of a solution $u(x)$ is a solution too. Thus a naive usage of BVP1DNL () will not succeed. It also turns out that the condition $u(+\infty)=0$ leads to numerical problems. A solution of (103) was generated with the ideas and algorithm spelled out below.

- Use $c=\frac{6}{\sqrt{5}} \approx 2.0412^{39}$ and select a value of $M=20 \gg 1$. Then examine two boundary value problems:

$$
\begin{aligned}
& -c u_{n}^{\prime}-u_{n}^{\prime \prime}=u_{n}\left(1-u_{n}\right) \quad \text { on }-M<x<0 \text { and } u_{n}(-M)=1 \text { and } u_{n}(0)=\frac{1}{4} \\
& -c u_{p}^{\prime}-u_{p}^{\prime \prime}=u_{p}\left(1-u_{p}\right) \quad \text { on } 0<x<+M \text { and } u_{p}(0)=\frac{1}{4} \text { and } u_{p}(+M)=\text { ValueAtM }
\end{aligned}
$$

Consider the value of $u_{P}(+M)$ as parameter and determine its value such that $u_{n}^{\prime}(0)=u_{p}^{\prime}(0)$. Use the graphical hint in Figure 146(a) to select an initial interval for the Octave command zero () to determine a numerical solution of $u_{n}^{\prime}(0)=u_{p}^{\prime}(0)$. The code below leads to the value $u_{p}(+20) \approx 8.0826 \cdot 10^{-8}$.

- With the obtained optimal value of $u(+M)$ solve the two boundary value problems on $-M<x<0$ and $0<$ $x<+M$. Since $u_{n}(0)=u_{p}(0)$ and $u_{n}^{\prime}(0)=u_{p}^{\prime}(0)$ these two solutions can be patched together at $x=0$ to obtain a solution of the ODE (103) on $-M<x<M$, leading to Figure 146(b) and the numerical confirmation of $u_{n}^{\prime}(0)=u_{p}^{\prime}(0)$.

```
first derivatives: u'(x-0)=-0.102206 and u'(x+0)=-0.102206, difference = 6.6294e-10
```


Figure 146: The solution of Fisher's equation

```
\square Fisher.m
    function Fisher()
    c = 5/sqrt(6); M = 20; N = 50; Join = 0.25;
    f = {@(x,u) (u.* (1-u)), @(x,u) (1-2*u) };
    interval = linspace(0,M,N)'; intervaln = linspace(-M, 0,N)';
    %% find the parameter
    function slopes = FindSlopes(valueM,graphs)
    BCleft = Join; BCright = valueM;
    [xp,u0] = BVP1D(interval,1,-c,0,1,0,BCleft,BCright);
```

[^28]```
[xp,up,inform] = BVP1DNL(interval,1,-c,0,1,f,BCleft,BCright,u0);
BCleft = 1; BCright = Join;
[xn,u0] = BVP1D(intervaln,1,-c,0,1,0,BCleft,BCright);
[xn,un,inform] = BVP1DNL(intervaln,1,-c,0,1,f,BCleft,BCright,u0);
dup = FEM1DEvaluateDu(xp,up); dun = FEM1DEvaluateDu(xn,un);
slopes = [dun(end),dup(1)];
endfunction
%%ValueMList = linspace(0,1e-3,10); %% for M = 10
ValueMList = linspace(0,2e-7,10); %% for M = 20
for jj = 1:length(ValueMList)
 s = FindSlopes(ValueMList(jj)); sn(jj) = s(1); ,sp(jj) = s(2);
endfor
figure(1); plot(ValueMList,sp,ValueMList,sn);
xlabel('value of u(+M)'); ylabel('slopes at x=0');
legend('x>0','x<0','location','south')
%% find the best value at }\textrm{x}=+\textrm{M
SameSlope = @(valueM) diff(FindSlopes(valueM));
ValueAtM = fzero(SameSlope,[5,9]*1e-8) %% for M = 20
%% solve the two BVPs
BCleft = Join; BCright = ValueAtM; %% for M = 20
u0 = @ (x) (xp-M) .^ 6/M^ 6*Join;
[xp,up,inform] = BVP1DNL(interval,1,-c,0,1,f,BCleft,BCright,u0,
 'Display','off','tol',1e-8);
figure(11); plot(xp,u0(xp),xp,up); xlabel('x'); ylabel('u');
 legend('u_0','u','location','northeast')
intervaln = linspace(-M,0,N)'; BCleft = 1; BCright = Join;
u0 = @ (x) 1- (x+M) .^ 4/M^ 4* (1-Join);
[xn,un,inform] = BVP1DNL(intervaln,1,-c,0,1,f,BCleft,BCright,u0,
 'Display','off','tol',1e-8);
figure(12); plot(xn,u0(xn),xn,un); xlabel('x'); ylabel('u');
 legend('u_0','u','location','southwest')
figure(2); plot(xn,un,xp,up); xlabel('x'); ylabel('u');
%% evaluate the derivatives at x=0
[dup, ddup] = FEM1DEvaluateDu(xp,up) ;
[dun, ddun] = FEM1DEvaluateDu(xn,un);
disp(sprintf("first derivatives: u'(x-0) = %g and u'(x+0)= %g, difference = %g",
 dun (end), dup (1), dun (end) -dup (1)))
endfunction
```


### 9.23.2 A dynamic solution

Fisher's equation (102) is a dynamic equation, for which the above approach was searching for traveling wave solutions. Use the command IBVP1DNL () to examine the dynamic behavior directly. On an interval $0 \leq x \leq 60$ use the boundary conditions $\frac{\partial}{\partial x} u(0, t)=0$ and $u(60, t)=0$. The initial condition $u(x, 0)$ is a very small, positive contribution, localized at $x \approx 0$, e.g. $u(x, 0)=0.1 \exp \left(-3 x^{2}\right)$. The code FisherDynamic.m leads to Figure 147. After a rather short time a traveling front forms and moves with a constant speed $c \approx 2$.

## FisherDynamic.m

```
L = 60; N = 401; Interval = linspace(0,L,N)';
w = 1; a = 1; b = 0; c = 0; d = 1; alpha = 1.0;
f = {@(x,t,u)alpha*u.* (1-u),@(x,t,u)alpha* (1-2*u)};
t0 = 0; tend = 25; steps = [30,30];
BCleft = [0,0]; BCright = 0;
u0 = @ (x)0.1*exp (-3*x.^^2);
[x,u_all,t] = IBVP1DNL(Interval,w,a,b, c,d,f,BCleft,BCright,u0,t0,tend,steps,'tol', 1e-8);
```



Figure 147: A dynamic solution of Fisher's equation

```
ind15 = find(abs(t-15)<1e-10); ind20 = find(abs(t-20)<1e-10); ind25 = find(abs(t-25)<1e-10);
ind5 = find(abs(t-5)<1e-10); ind10 = find(abs(t-10)<1e-10);
figure(1); plot(r,u_all(:,ind5),r,u_all(:,ind10),r,u_all(:,ind15),...
 r,u_all(:,ind20),r,u_all(:,ind25)); xlabel('r'); ylabel('u');
 legend('t=5','t=10','t=15','t=20','t=25','location','northeast')
figure(2); mesh(t,x,u_all); xlabel('t'); xlim([t0,tend])
 ylabel('x'); zlabel('u'); view([-70,20])
figure(3); contour(t,x,u_all); xlabel('t'); ylabel('x');
```


### 9.23.3 A dynamic solution of the radially symmetric setup

Fisher's equation (102) is for Cartesian coordinates and the planar front is moving in one direction. For the 3D case with the solution $u(r, t)$ depending on the radius $r=\sqrt{x^{2}+y^{2}+z^{2}}$ and time $t$ examine

$$
\begin{equation*}
r^{2} \frac{\partial}{\partial t} u(r, t)-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r} u(r, t)\right)=r^{2} f(u(r, t))=r^{2} \frac{1}{\pi} \sin (\pi u(r, t)) . \tag{104}
\end{equation*}
$$

The nonlinear function $f(u)=u(1-u)$ is replaced by $f(u)=\frac{1}{\pi} \sin (\pi u)$, a function with the same key features $f(0)=$ $f(1)=0, f^{\prime}(0)=1$ and $f(u)>0$ for $0<u<1$. The problem was solved using a finite difference approach in [Stah08]. This problem can be solved by IBVP1DNL () with very similar code and leads to similar results, visible in Figure 148.


Figure 148: A dynamic solution of Fisher's equation for the radially symmetric setup

## FisherDynamicRadial.m

```
L = 60; N = 401; Interval = linspace(0,L,N)';
w = @(r)r.^2; a = @(r)r.^2; b = 0; c = 0; d = @(r)r.^2; alpha = 1.0/pi;
%%f = {@(r,t,u)alpha*u.*(1-u),@(r,t,u)alpha*(1-2*u) };
```

```
f = {@(r,t,u)alpha*sin(pi*u),@(r,t,u)alpha*pi*cos(pi*u)};
t0 = 0; tend = 25; steps = [30,60];
BCleft = [0,0]; BCright = 0;
u0 = @ (r)0.1*exp (-3*r.^2);
[r,u_all,t] = IBVP1DNL(Interval,w,a,b,c,d,f,BCleft,BCright,u0,t0,tend,steps,'tol', 1e-8);
ind15 = find(abs(t-15)<1e-10); ind20 = find(abs(t-20)<1e-10); ind25 = find(abs(t-25)<1e-10);
ind5 = find(abs(t-5)<1e-10); ind10 = find(abs(t-10)<1e-10);
figure(1); plot(r,u_all(:,ind5),r,u_all(:,ind10),r,u_all(:,ind15),...
 r,u_all(:,ind20),r,u_all(:,ind25)); xlabel('r'); ylabel('u');
 legend('t=5','t=10','t=15','t=20','t=25','location','northeast')
figure(2); mesh(t,r,u_all); xlabel('t'); xlim([t0,tend])
 ylabel('r'); zlabel('u'); view([-70,20])
figure(3); contour(t,r,u_all); xlabel('t'); ylabel('r');
```


### 9.24 From Salt Lake City to Zürich, the shortest connection on a sphere

On the right find a graphics of the northern hemisphere (radius $R=$ 6300 km ) with the two cities Zürich and Salt Lake City shown. The geographic data of the towns is given by

|  | latitude $\frac{\pi}{2}-\theta$ | longitude $\phi$ |
| :--- | :---: | :---: |
| Salt Lake City | $41^{\circ}$ | $-112^{\circ}$ |
| Zürich | $47^{\circ}$ | $+8^{\circ}$ |

Airlines prefer to use the shortest connection possible and will fly north first, and then turn back south. Use calculus of variations to find
 the corresponding boundary value problem and verify that the shortest connection follows a great circle.

To examine this problem use spherical coordinates.

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=R\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta
\end{array}\right)
$$

The longitude equals the angle $\phi$ and the latitude is given by $\frac{\pi}{2}-\theta$. Represent the connection from Salt Lake City to Zürich by writing the latitude as a function of the longitude, i.e. $\theta=u(\phi)$. To find the total length $L$ express the length element $d l$ in terms of spherical coordinates. Use basic calculus to find

$$
\begin{aligned}
d l & =R \sqrt{\sin ^{2} \theta d \phi^{2}+d \theta^{2}}=R \sqrt{\sin ^{2}(u(\phi))+\left(u^{\prime}(\phi)\right)^{2}} d \phi \\
L(u) & =R \int_{\phi_{0}}^{\phi_{1}} \sqrt{\sin ^{2}(u(\phi))+\left(u^{\prime}(\phi)\right)^{2}} d \phi=R \int_{\phi_{0}}^{\phi_{1}} g\left(\phi, u(\phi), u^{\prime}(\phi)\right) d \phi .
\end{aligned}
$$

To be determined is the function $\theta=u(\phi)$ such that the above functional $L(u)$ is minimized, respecting the boundary conditions $u\left(\phi_{S L C}\right)=\theta_{S L C}$ and $u\left(\phi_{Z H}\right)=\theta_{Z H}$. Use calculus of variations to find the Euler-Lagrange equation

$$
\begin{align*}
-\frac{d}{d \phi}\left(\frac{\partial}{\partial u^{\prime}} g\right) & =-\frac{\partial}{\partial u} g \\
-\frac{d}{d \phi}\left(\frac{u^{\prime}}{\sqrt{\sin ^{2}(u)+\left(u^{\prime}\right)^{2}}}\right) & =-\frac{\cos (u) \sin (u)}{\sqrt{\sin ^{2}(u)+\left(u^{\prime}\right)^{2}}} . \tag{105}
\end{align*}
$$

This leads to a nonlinear boundary value problem for the function $u(\phi)$.

### 9.24.1 A solution based on successive substitution

With FEMoct ave use the method of successive substitution and hope for convergence. Start with a straight line connection, i.e. the solution of $\frac{d^{2}}{d \phi^{2}} u(\phi)=0$. Then hope for the iteration $u_{n-1} \rightarrow u_{n}$ to converge, where $u_{n}$ solves

$$
\frac{d}{d \phi}\left(\frac{u_{n}^{\prime}}{\sqrt{\sin \left(u_{n-1}\right)^{2}+\left(u_{n-1}^{\prime}\right)^{2}}}\right)=\frac{\cos \left(u_{n-1}\right) \sin \left(u_{n-1}\right)}{\sqrt{\sin \left(u_{n-1}\right)^{2}+\left(u_{n-1}^{\prime}\right)^{2}}} .
$$

To use the command BVP1D () for this iteration the following steps are performed.

- Determine the Gauss integration points by phiG = FEM1DGaussPoints(phi).
- Evaluate $u(\phi)=\theta(\phi)$ and $u^{\prime}(\phi)=\frac{d}{d \phi} \theta(\phi)$ at the Gauss points with the help of [thetaG,DthetaG] = pwquadinterp(phi,theta, phiG)
- Evaluate the coefficients $a(\phi)$ and $d(\theta)$ at the Gauss points by

```
- a = (sin(thetaG).^2 + DthetaG.^2).^^(-1/2)
-d = sin(thetaG).*\operatorname{cos(thetaG)./sqrt(sin(thetaG).^2 + DthetaG.^2)}
```

- Call [phi,theta] = BVP1D(interval,a, 0,0,d,-1,BCleft, BCright)

To verify that the shortest connection is on a great circle use the vectors $\vec{p}_{S L C}$ and $\vec{p}_{Z H}$ connecting the center of the earth to the two cities. Then determine the vector $\vec{n}$ orthogonal to the plane of the great circle connecting Salt Lake City and Zürich.

$$
\vec{n}=\frac{1}{\left\|\vec{p}_{S L C} \times \vec{p}_{Z H}\right\|} \vec{p}_{S L C} \times \vec{p}_{Z H}
$$

The scalar product $\langle\vec{p}, \vec{n}\rangle$ will determine the distance of the point $\vec{p}$ from the plane containing the great circle. In Figure 149 find the results of successive substitution performed by the code SaltLakeCity2Zuerich.m below. The (slow) animation also shows the length $L$ for each iteration.

```
Iteration 1: L = 9510.058645 km
Iteration 2: L = 8532.915369 km
Iteration 3: L = 8491.805282 km
Iteration 4: L = 8485.252338 km
Iteration 5: L = 8483.738234 km
```

- Figure 149(a) shows the latitude as function of the longitude. The result of the first computations stays clearly to far south. The sequence of solutions is monotonically increasing and converging.
- Figure 149(b) shows the resulting curves in space. The length unit is the radius $R$ of the earth.
- Figure 149 (c) shows the distance from the plane of the great circle connecting Salt Lake City and Zürich. This distance converges to zero, i.e. the shortest connection is along a great circle.

```
SaltLakeCity2Zuerich.m
 N = 51; R = 6300;
 Angles_ZH = [8,90-47]/180*pi; Angles_SLC = [-112,90-41]/180*pi;
 Vec_ZH = R*[sin(Angles_ZH(2))*cos(Angles_ZH(1));
 sin(Angles_ZH(2)) *sin(Angles_ZH(1));cos(Angles_ZH(2))];
 Vec_SLC = R*[sin(Angles_SLC(2)) *Cos(Angles_SLC(1));
 sin(Angles_SLC(2)) *sin(Angles_SLC(1));cos(Angles_SLC(2))];
 n = cross(Vec_SLC,Vec_ZH); n = n/norm(n);
 BCleft = Angles_SLC(2); BCright = Angles_ZH(2);
 interval = linspace(Angles_SLC(1),Angles_ZH(1),N);
 [phi,theta] = BVP1D(interval,1,0,0,1,0,BCleft,BCright);
 figure(1); plot(phi/pi*180,90-theta/pi*180);
 xlabel('\phi [deg]'); ylabel('90-0 [deg]'); hold on
```



Figure 149: The connections between Salt Lake City and Zürich. The plots of latitude as function of longitude, the curves in space on the earth as sphere with radius 1 and the distances from the plane with the great circle.

```
x = sin(theta).*cos(phi); y = sin(theta).*sin(phi); z = cos(theta);
Dtheta = FEM1DEvaluateDu(phi,theta);
figure(2); plot3(x,y,z);
 xlabel('x'); ylabel('y'); zlabel('z'); view([-20,10]); hold on
disp(sprintf("Iteration 1: L = %f km",R*trapz(phi,sqrt(sin(theta).^2+Dtheta.^2))))
figure(3); plot(phi*180/pi, [x,y,z]*n);
 xlabel('\phi [deg]'); hold on;
phiG = FEM1DGaussPoints(phi);
for jj = 2:5;
 [thetaG,DthetaG] = pwquadinterp(phi,theta,phiG);
 a = (sin(thetaG).^2 + DthetaG.^2).^(-1/2);
 d = -sin(thetaG).*cos(thetaG)./sqrt(sin(thetaG) .^2 + DthetaG.^2);
 [phi,theta] = BVP1D(interval,a,0,0,d,1,BCleft,BCright);
 Dtheta = FEM1DEvaluateDu(phi,theta);
 disp(sprintf("Iteration %i: L = %f km",
 jj,R\startrapz(phi,sqrt(sin(theta).^^2+Dtheta.^2))))
 figure(1); plot(phi/pi*180,90-theta/pi*180);
 x = sin(theta).*\operatorname{cos(phi); y = sin(theta).*sin(phi); z = cos(theta);}
 figure(2); plot3(x,y,z);
 figure(3); plot(phi*180/pi,[x,y,z]*n);
 pause(0.2)
endfor %% jj
figure(1); legend('1','2','3','4','5'); hold off;
figure(2); hold off; figure(3); hold off
```


### 9.24.2 A solution using BVP 1DNL ()

When solving the BVP (105)

$$
-\frac{d}{d \phi}\left(\frac{u^{\prime}}{\sqrt{\sin ^{2}(u)+\left(u^{\prime}\right)^{2}}}\right)=-\frac{\cos (u) \sin (u)}{\sqrt{\sin ^{2}(u)+\left(u^{\prime}\right)^{2}}} .
$$

with the help of BVP1DNL () the partial derivatives of the right hand side with respect to $u$ and $u^{\prime}$ will be used.

$$
\begin{aligned}
f\left(\phi, u, u^{\prime}\right) & =-\frac{\cos (u) \sin (u)}{\sqrt{\sin ^{2}(u)+\left(u^{\prime}\right)^{2}}} \\
f_{u}=\frac{\partial}{\partial u} f\left(\phi, u, u^{\prime}\right) & =-\frac{1-2 \sin ^{2}(u)}{\sqrt{\sin ^{2}(u)+\left(u^{\prime}\right)^{2}}}+\frac{\cos ^{2}(u) \sin ^{2}(u)}{{\sqrt{\sin ^{2}(u)+\left(u^{\prime}\right)^{2}}}^{3}}
\end{aligned}
$$

$$
f_{u^{\prime}}=\frac{\partial}{\partial u^{\prime}} f\left(\phi, u, u^{\prime}\right)=\frac{\cos (u) \sin (u) u^{\prime}}{\sqrt{\sin ^{2}(u)+\left(u^{\prime}\right)^{2}}}
$$

Then the algorithm in the code below will use a combination of Newton's method and partial substitution. Thus the convergence will not be drastically faster then the pure partial substitution implemented in the above code, but there is some error control and the algorithm has not to be coded explicitly.

```
 SaltLakeCity2Zuerich.m
 N = 51; R = 6300;
 Angles_ZH = [8,90-47]/180*pi; Angles_SLC = [-112,90-41]/180*pi;
 BCleft = Angles_SLC(2); BCright = Angles_ZH(2);
 interval = linspace(Angles_SLC(1),Angles_ZH(1),N);
 a = @(x,u,du)(sin(u).^2+du.^2).^(-0.5);
 f = {@(x,u,du) (-cos(u).*sin(u))./sqrt(sin (u).^2+du.^2),
 @ (x,u,du)-(1-2*\operatorname{sin}(u).^2)./sqrt (sin(u).^^2+du.^2) . . .
 +(\operatorname{cos}(u).^2.**sin (u).^2)./(sqrt (sin (u).^^2+du.^ 2) .^3),
 @ (x,u,du) (cos (u).*sin (u) .*du)./(sqrt (sin(u) .^2+du. ^2) .^3) };
 [phi2,theta2] = BVP1D(interval,1,0,0,1,0,BCleft,BCright); %% generate an intial guess
 [phi2,theta2,inform] = BVP1DNL(interval,a,0,0,1,f,BCleft,BCright,theta2,
 'MaxIter',20,'Display','iter');
 figure(4); plot(phi/pi*180,90-theta/pi*180);
 xlabel('\phi [deg]'); ylabel('90-0 [deg]');
 Dtheta2 = FEM1DEvaluateDu(phi2,theta2);
 disp(sprintf("BVP1DNL(): L = %f km",R*trapz(phi2,sqrt(sin(theta2).^2+Dtheta2.^2))))
 -->
 iteration 1, RMS (correction) = 3.564728e-02, RMS (phi) = 2.463522e-02
 iteration 2, RMS (correction) = 9.219981e-03, RMS (phi) = 3.524064e-03
 iteration 3, RMS (correction) = 3.832637e-03, RMS(phi) = 1.109014e-03
 iteration 4, RMS (correction) = 1.851140e-03, RMS (phi) = 4.995842e-04
 iteration 5, RMS (correction) = 9.461144e-04, RMS (phi) = 2.493060e-04
 iteration 6, RMS (correction) = 5.000805e-04, RMS (phi) = 1.302717e-04
 iteration 7, RMS (correction) = 2.705884e-04, RMS (phi) = 6.998341e-05
 iteration 8, RMS (correction) = 1.490106e-04, RMS (phi) = 3.832821e-05
 iteration 9, RMS (correction) = 8.320151e-05, RMS (phi) = 2.129955e-05
 iteration 10, RMS (correction) = 4.698144e-05, RMS (phi) = 1.197436e-05
 iteration 11, RMS (correction) = 2.677860e-05, RMS (phi) = 6.796374e-06
 iteration 12, RMS (correction) = 1.538521e-05, RMS (phi) = 3.888693e-06
 BVP1DNL(): L = 8483.161942 km
```


### 9.25 A 1D nonlinear bending beam problem

The bending of a slender beam can be described by the angle $\alpha(s)$ as function of the arc length $s$. For a beam with inertia of the cross section $I$ and a material with Young's modulus $E$ the curvature is given by

$$
\kappa(s)=\alpha^{\prime}(s)=\frac{M(s)}{E I}
$$

where $M(s)$ is the total moment at position $s$. Examine a beam attached at $(x, y)=(0,0)$ and starting out horizontaly (i.e. $\alpha(0)=0$ ) with a vertical force $F_{2}$ applied at the other endpoints $s=L$. The $(x, y)$ coordinates of the beam at $s=l$ are given by an integral

$$
\binom{x(s)}{y(s)}=\int_{0}^{s}\binom{\cos (\alpha(\tau))}{\sin (\alpha(\tau))} d \tau .
$$

The moment $M(s)$ is given by

$$
M(s)=F_{2}(x(L)-x(s))=-F_{2} \int_{s}^{L} \cos (\alpha(\tau)) d \tau .
$$

Using the above equation for the bending of the beam leads to

$$
\begin{aligned}
\alpha^{\prime}(s) & =\frac{M(s)}{E I}=\frac{F_{2}}{E I} \int_{s}^{L} \cos (\alpha(\tau)) d \tau \\
\frac{d}{d s} \alpha^{\prime}(s) & =\frac{F_{2}}{E I} \frac{d}{d s} \int_{s}^{L} \cos (\alpha(\tau)) d \tau=-\frac{F_{2}}{E I} \cos (s) \\
-\alpha^{\prime \prime}(s) & \left.=\frac{F_{2}}{E I} \cos (\alpha(s))\right) .
\end{aligned}
$$

This ODE has to be supplemented with the boundary conditions $\alpha(0)=\alpha^{\prime}(L)=0$ to arrive at a nonlinear BVP. For small forces the approximation $\cos (\alpha) \approx 1$ leads to the solution

$$
\alpha(s) \approx \frac{F_{2}}{2 E I}\left(L^{2}-(L-s)^{2}\right)=\frac{F_{2}}{2 E I}\left(2 L s-s^{2}\right) .
$$

Use this result for code varification or as possible starting value for Newton's method.

### 9.25.1 Solving the BVP using Newton's algorithm

The nonlinear boundary value problem can be solved using Newton's method. Use the idea of linearization to arrive at an iterative algorithm.

$$
\begin{aligned}
-\alpha^{\prime \prime}(s) & =\frac{F_{2}}{E I} \cos (\alpha(s)) \quad \text { for } \quad 0<s<L \quad \text { and } \quad \alpha(0)=\alpha^{\prime}(L)=0 \\
-\alpha^{\prime \prime}(s)-\phi^{\prime \prime}(s) & =\frac{F_{2}}{E I} \cos (\alpha(s)+\phi(s)) \approx \frac{F_{2}}{E I}(\cos (\alpha(s))-\sin (\alpha(s)) \phi(s)) \\
-\phi^{\prime \prime}(s)+\frac{F_{2}}{E I} \sin \left(\alpha_{n}(s)\right) \phi(s) & =+\alpha_{n}^{\prime \prime}(s)+\frac{F_{2}}{E I}\left(\cos \left(\alpha_{n}(s)\right)\right) \quad \text { with } \quad \phi(0)=\phi^{\prime}(L)=0 \\
\alpha_{n+1}(s) & =\alpha_{n}(s)+\phi(s)
\end{aligned}
$$

The code BendingBeam1D.m implements the above algorithm. For small values of $F_{2}$ the results are as expected. But for larger values of $F_{2}$ the resulting figure is at best surprising. In Figure 150(a) find the result for $F_{2}=1.5$, and this is in fact a solution of the nonlinear BVP, but not the expected solution. Newton's method works extremely well, if the initial guess is "close enough" to the desired solution. But the last point is critical and failed for this bending beam problem for large forces $F_{2}$.

```
 F2 = 1.5; %% try values of 0.1 0.5 1.0 and 2
 N = 1000; s = linspace(0,L,N);
 [sn,alpha] = BVP1D(s,1,0,0,1,F2/EI,0, [0,0]);
 figure(1); plot(sn,alpha); xlabel('arclength s'); ylabel('angle \alpha')
 xGauss = FEM1DGaussPoints(sn);
 [xGauss,Nodes2GaussU] = FEM1DGaussPoints(sn);
 for jj = 1:20
 [dalpha,ddalpha] = FEM1DEvaluateDu(sn,alpha); %% evaluate derivative at nodes
 RHS = ddalpha + F2/EI*COS(alpha);
 alphaGauss = Nodes2GaussU*alpha; %% evaluate u at Gauss points
 [sn,phi] = BVP1D(s,1,0,+F2/EI*sin(alphaGauss),1,RHS,0,[0,0]);
 disp(sprintf('max(abs(phi)) = %g, max(abs(RHS)) = %g',max(abs(phi)), max(abs(RHS))))
 alpha = alpha + phi;
 figure(2); plot(sn,alpha); xlabel('x'); ylabel('angle \alpha')
 pause(0.2)
 endfor
 x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
figure(3); plot(x,y); xlabel('x'); ylabel('y')
```

To obtain a reliable solution for $F_{2}=2$ it is advisable to use a parameterized approach. In the code below the value of $F_{2}$ is increased form 0 to 2.0 is steps of 0.25 and at each new level of $F_{2}$ the result of the previous computation is used as starting value for $\alpha(s)$. Find the graphical results in Figure 150(b).


Figure 150: The solutions for a bending beam

## BendingBeam1D.m

```
 L = 3; EI = 1; F2_List = [0.25:0.25:2];
```

    L = 3; EI = 1; F2_List = [0.25:0.25:2];
    %% a parametrized approach
    %% a parametrized approach
    N = 100; s = linspace(0,L,N)';
    N = 100; s = linspace(0,L,N)';
    [sn,alpha] = BVP1D(s,1,0,0,1,F2_List(1)/EI,0,[0,0]);
    [sn,alpha] = BVP1D(s,1,0,0,1,F2_List(1)/EI,0,[0,0]);
    figure(1); plot(sn,alpha); xlabel('arclength s'); ylabel('angle \alpha')
    figure(1); plot(sn,alpha); xlabel('arclength s'); ylabel('angle \alpha')
    xGauss = FEM1DGaussPoints(sn);
    xGauss = FEM1DGaussPoints(sn);
    figure(3); clf; hold off
    figure(3); clf; hold off
    for F2 = F2_List
    for F2 = F2_List
        for jj = 1:10
        for jj = 1:10
            [dalpha,ddalpha] = FEM1DEvaluateDu(sn,alpha);
            [dalpha,ddalpha] = FEM1DEvaluateDu(sn,alpha);
            RHS = ddalpha + F2/EI*COS(alpha);
            RHS = ddalpha + F2/EI*COS(alpha);
            alphaGauss = pwquadinterp(sn,alpha,xGauss); %% evaluate u at Gauss points
            alphaGauss = pwquadinterp(sn,alpha,xGauss); %% evaluate u at Gauss points
            [sn,phi] = BVP1D(s,1,0,F2/EI*sin(alphaGauss),1,RHS,0,[0,0]);
            [sn,phi] = BVP1D(s,1,0,F2/EI*sin(alphaGauss),1,RHS,0,[0,0]);
            alpha = alpha + phi;
            alpha = alpha + phi;
        endfor % jj
        endfor % jj
        x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
        x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
        figure(3); plot(x,y); xlabel('x'); ylabel('y'); hold on
        figure(3); plot(x,y); xlabel('x'); ylabel('y'); hold on
    endfor %% F2
    endfor %% F2
    hold off
    ```
 hold off
```


### 9.25.2 Solving the BVP with the command BVP 1 DNL ()

The above bending beam problem can be solved with the help of BVP1DNL (). There is less coding involved, but the problem of converging to a non desired solution remains. Observing the results of the iterations confirms that at first the algorithm is "searching for a solution", but once it is close to a solution quadratic convergence sets in, i.e. the number of stable digits is doubled at each step. This is expected for Newton's method.

## BendingBeam1D.m

```
 F2 = 1.5; %% try values of 0.1 0.25 0.5 1.0 and 2
 f = {@(s,alpha)F2/EI*cos(alpha), @(s,alpha)-F2/EI*sin(alpha) };
 N = 100; s = linspace(0,L,N)';
 %%% generate a good initial guess
 [sn,alpha0] = BVP1D(s,1,0,0,1,F2/EI,0,[0,0]); %% as solution of linear BVP
 %% alpha0 = @(s)F2/ (2*EI)* (L^2- (L-s).^2); %% use the analytical solution
 [sn,alpha,inform] = BVP1DNL(s,1,0,0,1,f,0,[0,0],alpha0,'tol',1e-8,'MaxIter',50,'Display','iter');
 inform
 figure(1); plot(sn,alpha); xlabel('arclength s'); ylabel('angle \alpha')
 x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
 figure(3); plot(x,y); xlabel('x'); ylabel('y');
```

The output of the above code illustrates the long search for a solution by Newton's method, and the quadratic convergence as soon as close to one of the possible solutions, starting at iteration 11.

```
iteration 1, RMS (correction) = 2.148167e+00, RMS (phi) = 3.658963e+01
iteration 2, RMS (correction) = 1.534256e+00, RMS (phi) = 1.281984e+00
iteration 3, RMS (correction) = 3.233207e-01, RMS (phi) = 6.380582e-01
iteration 4, RMS (correction) = 1.715649e-01, RMS (phi) = 6.706732e-01
iteration 5, RMS (correction) = 1.442408e-01, RMS (phi) = 5.281602e-01
iteration 6, RMS (correction) = 1.380244e-01, RMS (phi) = 4.177463e-01
iteration 7, RMS (correction) = 1.388972e-01, RMS (phi) = 3.168041e-01
iteration 8, RMS (correction) = 1.277986e-01, RMS (phi) = 2.140754e-01
iteration 9, RMS (correction) = 8.810050e-02, RMS (phi) = 1.124749e-01
iteration 10, RMS (correction) = 3.198417e-02, RMS (phi) = 3.424090e-02
iteration 11, RMS (correction) = 3.261890e-03, RMS (phi) = 3.282558e-03
iteration 12, RMS (correction) = 3.022821e-05, RMS(phi) = 3.022996e-05
iteration 13, RMS (correction) = 2.563226e-09, RMS (phi) = 2.562500e-09
inform = scalar structure containing the fields:
 info = 1
 iter = 13
 AbsError = 2.5632e-09
```

The parametric approach will again reliably generate the desired solution with very few iterations for each value of $F_{2}$.

```
\squareBendingBeam1D.m
 L = 3; EI = 1;
 F2_List = [0:0.25:2];
 N = 100; s = linspace(0,L,N)'; sn = sort([s; s(1:end-1)+diff(s)/2]);
 alpha = 0;
 for F2 = F2_List
 f = {@(s,al)F2/EI*Cos(al), @(s,al)-F2/EI*sin(al)};
 [sn,alpha,inform] = BVP1DNL(s,1,0,0,1,f,0, [0,0],alpha);
 inform
 endfor
 inform
 figure(1); plot(sn,alpha*180/pi); xlabel('arclength s'); ylabel('angle \alpha [deg]')
 x = cumtrapz(sn,cos(alpha)); y = cumtrapz(sn,sin(alpha));
 figure(3); plot(x,y); xlabel('x'); ylabel('y');
```


### 9.25.3 Solving the BVP as final value of a dynamic problem, using IBVP 1DNL ()

The equation for the bent beam $-\alpha^{\prime \prime}(s)=\frac{F_{2}}{E I} \cos (\alpha(s))$ can be looked at as the steady state solution of an artificial dynamic problem.

$$
\begin{aligned}
\frac{\partial}{\partial t} \alpha(s, t)-\frac{\partial^{2}}{\partial s^{2}} \alpha(s, t) & =\frac{F_{2}}{E I} \cos (\alpha(s, t)) & & \text { for } 0<s<L \text { and } t>0 \\
\alpha(0, t)=\frac{\partial}{\partial s} \alpha(L, t) & =0 & & \text { for } t>0 \\
\alpha(s, 0) & =0 & & \text { for } 0<s<L
\end{aligned}
$$

If this solution converges to a final solution $\alpha_{\infty}(s)=\lim _{t \rightarrow \infty} \alpha(s, t)$ then $\alpha_{\infty}(s)$ is a solution of the bending beam problem ${ }^{40}$. The virtual time $t$ takes over the role of a parameter, just like the force $F_{2}$ in the above approach. The code BeamNonlinear1DDynamic.m below implements this approach and Figure 151 confirms the expected behavior. The left part of the figure shows the stepwise approximation of the steady state solution. By selecting other initial values $\alpha_{0}(s)=u_{0}(s)$ one can search for different solutions. As example examine the result for $u_{0}(s)=\frac{-5 \pi}{4}\left(1-\left(\frac{s}{L}-1\right)^{2}\right)$.

[^29]

Figure 151: Time evolution and the final solution for a dynamic bending beam

## BeamNonlinear1DDynamic.m

```
%% solve the nonlinear beam problem as dynamic problem
 L = 3; EI = 1; F2 = 2.0;
 Interval = linspace(0,L,100)'; T0 = 0; Tend = 4; steps = [10,1];
 f = {@(x,t,u)F2*\operatorname{cos}(u), @(x,t,u)-F2*sin(u) };
 u0 = 0; %% the naive initial guess
 %%u0 = @(s,t)pi/2*(1-(s/L-1).^2); %% with a better initial guess
 %%u0 = @(s,t)-5/4*pi*(1-(s/L-1).^2); %% to aim for a different solution
 [s,u_all,t] = IBVP1DNL(Interval,1,EI,0,0,1,f,0, [0,0],u0,T0,Tend, steps);
 figure(1); mesh(t,s,u_all); view([-50,20])
 xlabel('time t'); ylabel('arclength s'); zlabel('angle \alpha(s)')
 u = u_all(:,end);
 x = cumtrapz(s,cos(u)); y = cumtrapz(s,sin(u));
 figure(2); plot(x,y); xlabel('x'); ylabel('y');
```


### 9.26 Mass transfer in a porous catalyst

In [KubiHlav08, p. 92, Example 4.3, p. 255, Example 5.7] a nonlinear boundary value problem is examined, describing the mass transfer in a porous catalyst.

$$
-y^{\prime \prime}-\frac{a}{x} y^{\prime}=-\alpha^{2} y \exp \left(\frac{\gamma \beta(1-y)}{1+\beta(1-y)}\right) \quad \text { with } \quad y^{\prime}(0)=0 \quad \text { and } \quad y(1)=1
$$

For $\alpha=0$ there is the trivial solution $y(x)=1$. The nonlinear contribution and its partial derivative are given by

$$
\begin{aligned}
f(y) & =-\alpha^{2} y \exp \left(\frac{\gamma \beta(1-y)}{1+\beta(1-y)}\right) \\
\frac{\partial}{\partial y} f(y) & =-\alpha^{2} \exp \left(\frac{\gamma \beta(1-y)}{1+\beta(1-y)}\right)+\alpha^{2} y \exp \left(\frac{\gamma \beta(1-y)}{1+\beta(1-y)}\right) \frac{-\gamma \beta(1+\beta(1-y))+\gamma \beta(1-y) \beta}{(1+\beta(1-y))^{2}} \\
& =-\alpha^{2} \exp \left(\frac{\gamma \beta(1-y)}{1+\beta(1-y)}\right)\left(1+y \frac{-\gamma \beta}{(1+\beta(1-y))^{2}}\right) .
\end{aligned}
$$

In [KubiHlav08] the values $a=2, \gamma=20$ and $\beta=0.05$ are used and the parameter $0 \leq \alpha \leq 1$ is increased from 0 to 1 . BVP1DNL () can solve the problem directly for $\alpha=1$, but a parametric solution is possible too. Find the solutions of the code below in Figure 152. The results coincide with the numbers in [KubiHlav08, Example 5.7].


Figure 152: A BVP describing mass transfer in a porous catalyst

## PorousCatalyst.m

```
 N = 10; interval = linspace(0,1,N)';
```

    N = 10; interval = linspace(0,1,N)';
    a = 2; gamma = 20; beta = 0.05;
    a = 2; gamma = 20; beta = 0.05;
    BCleft = [0,0]; BCright = 1;
    BCleft = [0,0]; BCright = 1;
    y = 1;
    y = 1;
    figure(2); clf; hold on; box on; xlabel('x'); ylabel('y')
    figure(2); clf; hold on; box on; xlabel('x'); ylabel('y')
    for alpha = 0:0.2:1
    for alpha = 0:0.2:1
        f = {@(x,y) -alpha^2*y.*exp(gamma*beta*(1-y)./(1+beta*(1-y))),
        f = {@(x,y) -alpha^2*y.*exp(gamma*beta*(1-y)./(1+beta*(1-y))),
            @(x,y) -alpha^2 *exp (gamma*beta* (1-y)./(1+beta* (1-y))).*...
            @(x,y) -alpha^2 *exp (gamma*beta* (1-y)./(1+beta* (1-y))).*...
                (1-gamma*beta*y./( (1+beta*(1-y)).^2) ) };
                (1-gamma*beta*y./( (1+beta*(1-y)).^2) ) };
    [x,y] = BVP1DNL(interval,1,@(x)-a./x,0,1,f,BCleft,BCright,y);
    [x,y] = BVP1DNL(interval,1,@(x)-a./x,0,1,f,BCleft,BCright,y);
    plot(x,y)
    plot(x,y)
    disp(sprintf('alpha = %#3.2f, y(0) = %#g',alpha,y(1)))
    disp(sprintf('alpha = %#3.2f, y(0) = %#g',alpha,y(1)))
    endfor
    endfor
    legend('\alpha = 0.00','\alpha = 0.20','\alpha = 0.40','\alpha = 0.60',
    legend('\alpha = 0.00','\alpha = 0.20','\alpha = 0.40','\alpha = 0.60',
            '\alpha = 0.80','\alpha = 1.00','location','southeast')
            '\alpha = 0.80','\alpha = 1.00','location','southeast')
    figure(1); plot(x,y); xlabel('x'); ylabel('y'); box on
    figure(1); plot(x,y); xlabel('x'); ylabel('y'); box on
    -->
    -->
    alpha = 0.00, y(0) = 1.00000
    alpha = 0.00, y(0) = 1.00000
    alpha =0.20, y(0) = 0.993333
    alpha =0.20, y(0) = 0.993333
    alpha =0.40, y(0) = 0.973339
    alpha =0.40, y(0) = 0.973339
    alpha =0.60, y(0) = 0.940066
    alpha =0.60, y(0) = 0.940066
    alpha =0.80, y(0) =0.893713
    alpha =0.80, y(0) =0.893713
    alpha = 1.00, y(0) = 0.834810
    ```
 alpha = 1.00, y(0) = 0.834810
```

For a second set of values $a=0, \gamma=20$ and $\beta=0.4$ the algorithm converges nicely up to $\alpha \approx 0.37$. For $\alpha>0.4$ convergence is difficult to obtain.

In [KubiHlav08, Example 4.3] find the values for $a=2, \gamma=20, \beta=0.2$ and $\alpha=2$. A rather sophisticated iteration scheme was used in [KubiHlav08]. By increasing the value of $\alpha$ from 0 to 2 the results in the last row of [KubiHlav08, Table4-12] can be reproduced by BVP1DNL (). Find the results of the code below in Figure 153.

## PorousCatalyst.m

```
N = 51; interval = linspace(0,1,N)';
BCleft = [0,0]; BCright = 1;
a = 2; gamma = 20; beta = 0.2;
y = 1;
figure(2); clf; hold on; box on; xlabel('x'); ylabel('y')
for alpha = [0:0.1:1.6, 1.65:0.05:2]
```


(a) the solution for $\alpha=2$

(b) The solution for different values of $\alpha$

Figure 153: A BVP describing mass transfer in a porous catalyst, second setup

```
 f = {@(x,y) -alpha^2*y.*exp(gamma*beta* (1-y)./(1+beta*(1-y))),
 @(x,y) -alpha^2 *exp(gamma*beta\star(1-y)./(1+beta*(1-y))).*...
 (1-gamma*beta*y./((1+beta*(1-y)).^2))};
 [x,y] = BVP1DNL(interval,1,@(x)-a./x,0,1,f,BCleft,BCright,y);
 plot(x,y)
endfor
figure(1); plot(x,y); xlabel('x'); ylabel('y'); box on
x_n = [0:0.2:0.8]; y_n = pwquadinterp(x,y,x_n);
disp(sprintf('y(%g)=%5.4e, y (%g)=%5.4e, y(%g) =%5.4e, y (%g)=%5.4e, y (%g)=%5.4e',
 x_n(1),y_n(1),x_n(2),y_n(2),x_n(3),y_n(3),x_n(4),y_n(4),x_n(5),y_n(5)))
 -->
 y(0)=2.7643e-3, y(0.2)=5.3166e-3, y(0.4)=2.1871e-2, y(0.6)=1.0853e-1, y(0.8)=4.3316e-1
```


### 9.27 Troesch's equation

In [IzadSuayNoei21] or [KubiHlav08, p. 244, Example 5.4] Troesch's nonlinear boundary value problem is examined.

$$
y^{\prime \prime}(x)=\alpha \sinh (\alpha y(x)) \quad \text { with } \quad y(0)=0 \quad \text { and } \quad y(1)=1
$$

The results for $\alpha=0.5$ in [IzadSuayNoei21, Table 1] can be generated by BVP1DNL () with very few lines of code.

## Troesch.m

```
 N = 11; interval = linspace(0,1,N)'; BCleft = 0; BCright = 1; alpha = 0.5;
 f = {@(x,y) -alpha*sinh(alpha*y), @(x,y)-alpha^2*\operatorname{cosh}(alpha*y)};
 [x,y,inform] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,@(x)x);
 figure(1); plot(x,y); xlabel('x'); ylabel('y(x)')
 xd = [0.1:0.1:0.9]'; yd = pwquadinterp(x,y,xd);
 Results = [xd,yd]
 -->
 Results = 0.1 0.095944
 0.2 0.192129
 0.3 0.288794
 0.4 0.386185
 0.5 0.484547
 0.6 0.584133
 0.7 0.685201
 0.8 0.788017
 0.9 0.892854
```

To obtain the results for $\alpha=1$ in [IzadSuayNoei21, Table 2] just change the value of $\alpha$ in the above code.

In [KubiHlav08, Example 5.4] a shooting method is used to determine $\alpha$ as function of $y^{\prime}(0)$. The results in [KubiHlav08, Table5-6] are confirmed by the code below, using BVP1DNL ( ) .

## Troesch.m

```
N = 51; interval = linspace(0,1,N)'; BCleft = 0; BCright = 1;
figure(1); clf; hold on; box on
y = 1;
for alpha =[0.792, 1.151 1.753 2.394 3.308 4.129 5.0]
f = {@(x,y) -alpha*sinh(alpha*y), @(x,y)-alpha^2*cosh(alpha*y) };
[x,y] = BVP1DNL(interval,1,0,0,1,f,BCleft,BCright,y);
figure(1); plot(x,y); xlabel('x'); ylabel('y(x)'); drawnow()
[y0,dy0] = pwquadinterp(x,y,0);
disp(sprintf("alpha = %#6.5g, y'(0)= %g",alpha,dy0))
endfor
-->
alpha = 0.79200, y'(0)=0.900027
alpha =1.1510, y'}(0)=0.80019
alpha =1.7530, y'}(0)=0.60010
alpha = 2.3940, y'(0)=0.400003
alpha = 3.3080, y'}(0)=0.20000
alpha = 4.1290, y'(0)=0.0999462
alpha = 5.0000, y'(0)=0.0457183
```


### 9.28 Motion of a string

Examine the motion of a string of length 5 . For 2 seconds apply a force to the very left section $(0 \leq x \leq 1)$. Use a small damping factor, e.g. 0.25. A possible IBVP describing this setup is

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} u(x, t)+0.25 \frac{\partial}{\partial t} u(x, t)-\frac{\partial^{2}}{\partial x^{2}} u(x, t) & =f(x, t) & & \text { for } 0<x<5 \text { and } 0<t<10 \\
u(0, t)=u(5, t) & =0 & & \text { for } 0 \leq t \leq 10 \\
u(x, 0)=\frac{\partial}{\partial t} u(x, 0) & =0 & & \text { for } 0 \leq x \leq 5
\end{aligned}
$$

with the driving force function

$$
f(x, t)= \begin{cases}\cos \left(\frac{\pi}{2} x\right) \sin (2 \pi t) & \text { for } 0 \leq x \leq 1 \text { and } 0 \leq t \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

This problem is examined with the help of I2BVP1D (). Find the graphical result in Figure154. Observe the two cosshaped pulses moving with speed +1 . Then they are reflected at the border at $x=5$ and travelling with speed -1 . The amplitudes are slowly decaying, caused by the damping.

```
\squareMovingString.m
 N = 101; x_max = 5; interval = linspace(0,x_max, N)';
 omega = 2*pi;
 f = @ (x,t) (cos(x*pi/2).* (x<=1))*(sin(omega*t)*(t<=2));
 u0 = 0; ul = 0;
 w2 = 1; w1 = 0.25; a = 2; b = 0; c = 0; d = 1;
BCleft = [0]; BCright = [0];
t0 = 0; tend = 10; steps = [250,10];
[x,u,t] = I2BVP1D(interval,w2,w1,a,b,c,d,f,BCleft,BCright,u0,u1,t0,tend,steps);
figure(1); mesh(t,x,u); xlabel('time t'); ylabel('position x'); zlabel('u')
 xlim([min(t),max(t)]); ylim([min(x),max(x)]); view([20,20])
```


### 9.29 A plane stress example by Wait and Mitchel

This example is taken from [WaitMitc85, §4.4.3] with the material parameters suitable for rubber. The domain is visible in Figure 155.


Figure 154: Motion of a string, excited by an initial pulse close to $x=0$

- On the two sections connecting the points $\left(0, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{1}{3}\right)$ and $\left(\frac{1}{3}, 0\right)$ zero displacements are required.
- On the $45^{\circ}$ degree segment connecting $\left(\frac{2}{3}, 1\right)$ with $\left(1, \frac{2}{3}\right)$ the horizontal and vertical displacements are +0.3 . Thus the edge is displaced by $0.3 \sqrt{2} \approx 0.42$.
- The other four sections of the boundary are assumed to be force free.
- As a consequence the solid is severely deformed, visible on the right in Figure 155.


Figure 155: The original and deformed Mesh for a plane stress example

The problem is solved using a linear plane stress model. Find the implementation in the code WaitMitchell.m below.

- Define the material parameters for a rubber like material: Young's modulus $E$ and Poisson's ratio $\nu$.
- Define the domain and the boundary conditions. Then call CreateMeshTriangle () to generate the mesh, shown in Figure 155. The mesh consists of cubic elements. There are $5948+5948=11^{\prime} 896 \approx 12^{\prime} 000$ degrees of freedom. Use Mesh. nDOF to obtain this information.
- A function

$$
\operatorname{Disp}(x, y)=\left\{\begin{array}{lll}
0.3 & \text { if } & x+y>1 \\
0 & \text { if } & x+y<1
\end{array}\right.
$$

is defined to evaluate the known displacements on the boundary.

- A call of PlaneStress () will evaluate the horizontal and vertical displacements ( $u_{1}, u_{2}$ ). These are shown in Figure 156.


Figure 156: The displacements for a plane stress example

```
E = 3e6; nu = 0.45; %% rubber
Dom = [0,1/3,-11;1/3,1/3,-11;1/3,0,-22;1,0,-22;1,2/3,-11;2/3,1,-22;0,1,-22];
Mesh = CreateMeshTriangle('Domain',Dom,1e-3);
figure(1); FEMtrimesh(Mesh); axis equal
Mesh = MeshUpgrade (Mesh,'cubic');
function res = Disp(xy)
 res = 0.3.*(sum (xy,2)>1) ; %% if x+y>1
endfunction
[u1,u2] = PlaneStress(Mesh,E,nu,{0,0},{'Disp','Disp'},{0,0});
figure(2); FEMtrisurf(Mesh,u1); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(3); FEMtrisurf(Mesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2')
figure(100); ShowDeformation(Mesh,u1,u2,1); axis equal
```

- With the displacements use EvaluateStress () to determine the two normal stresses $\sigma_{x}$ and $\sigma_{x}$ and the shearing stress $\tau_{x y}$.
- Then generate images, leading to Figure 157. The stress concentration at the different corners is rather obvious.


Figure 157: The stresses for a plane stress example

```
WaitMitchell.m
[sigma_x,sigma_y,tau_xy] = EvaluateStress (Mesh,u1,u2,E,nu) ;
figure(4); FEMtrimesh (Mesh,sigma_x); xlabel('x'); ylabel('y'); zlabel('\sigma_x')
figure(5); FEMtrimesh (Mesh,sigma_y); xlabel('x'); ylabel('y'); zlabel('\sigma_y')
figure(6); FEMtrimesh (Mesh,tau_xy); xlabel('x'); ylabel('y'); zlabel('\tau_\{xy\}')
```

To analyze the situation more information might be useful. Find the graphical results in Figure 158.

- Use EvaluateVonMises () to determine the von Mises stress. The values have to be compared with the yield stress of the material.
- The energy density generated by EvaluateEnergyDensity () shows the concentration at the corners too.
- With FEMIntegrate () the total elastic energy $E_{\text {elast }} \approx 2.0 \cdot 10^{5} \mathrm{Nm}$ can be determined. The displacement of the $45^{\circ}$ edge is $D=0.3 \sqrt{2}$ and the total force $F$ (per meter of thickness of the block) is given by

$$
F=\frac{2 E_{\text {elast }}}{D}=\frac{2 E_{\text {elast }}}{0.3 \sqrt{2}} .
$$

The results by the code WaitMitchell. m is $F \approx 9.6 \cdot 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}}$.


Figure 158: The von Mises stress and the energy density for a plane stress example

```
VonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy);
 [eps_xx,eps_yy,eps_xy] = EvaluateStrain(Mesh,u1,u2);
 EnergyDensity = EvaluateEnergyDensity (Mesh,eps_xx,eps_yy,eps_xy, E, nu) ;
 ElasticEnergy = FEMIntegrate(Mesh,EnergyDensity)
 Force = 2*ElasticEnergy/(sqrt(2)*0.3)
 Contour = [Dom(:,1:2);Dom(1,1:2)];
 figure(7); clf; FEMtricontour(Mesh,VonMises/le6,[0:0.1:2]); xlabel('x'); ylabel('y');
 hold on; plot(Contour(:,1),Contour(:,2),'k'); colorbar();
 figure(8); clf;FEMtricontour(Mesh,EnergyDensity/1e6, [0:0.05:1]);xlabel('x');ylabel('y');
 hold on; plot(Contour(:,1),Contour(:,2),'k'); colorbar();
```

Of particular interest is the $45^{\circ}$ line connecting the points $\left(\frac{1}{3}, \frac{1}{3}\right)$ and $\left(\frac{5}{6}, \frac{5}{6}\right)$. Using the transformation rule for the strain tensor ${ }^{41}$ leads to

$$
\varepsilon_{45}=\frac{1}{2}\left(\varepsilon_{x x}+\varepsilon_{y y}+2 \varepsilon_{x y}\right)
$$

Integrating this normal strain along the connecting line should lead to the total displacement, i.e.

$$
\int_{1 / 3}^{5 / 6} \varepsilon_{45}(x, x) \sqrt{2} d x \approx 0.3 \sqrt{2}
$$

This is confirmed by the numerical integration using trapz (). Find the contour lines of $\varepsilon_{45}$ on the full domain and the values along the diagonal line in Figure 159. The very large values of the strain clearly indicate that the linear material model used is not appropriate. For large deformation the nonlinear material properties have to be taken into account.


Figure 159: The normal strain in the $45^{\circ}$ direction for a plane stress example

[^30]
## WaitMitchell.m

```
eps_45 = (eps_xx+eps_yy+2*eps_xy)/2;
x = linspace(1/3,1-1/6)';
eps_45line = FEMgriddata(Mesh,eps_45,x,x);
figure(9); clf; FEMtricontour(Mesh,eps_45,[0:0.05:0.6]); xlabel('x'); ylabel('y');
 hold on; plot(Contour(:,1),Contour(:,2),'k'); colorbar();
figure(10); plot(x,eps_45line); xlabel('x'); ylabel('eps_{45}')
Stretch = [trapz(sqrt (2)*x,eps_45line),sqrt (2)*0.3]
-->
Stretch = 0.4209 0.4243
```


### 9.30 A pipe under pressure

Examine a pipe with a circular cross section and inner radius $R$ and a wall with thickness $\Delta R$. On the inside a pressure $P$ is applied. The pipe under pressure will expand and the wall material will stretch. For ductile materials (e.g. copper, steel) the maximal value of the von Mises stress is a good criterion to decide whether the pipe will withstand the pressure, or break. The problem can be examined by FEM as a plane strain problem or as an axially symmetric problem, or one can determine an exact solution for a setup with a thin wall.

As exemplary situation examine:

- a pipe with inner radius $R=0.1 \mathrm{~m}$ and a wall thickness of $\Delta R=0.01 \mathrm{~m}$. A quarter of a cross section is visible in Figure 160.
- a pressure of $P=10 \mathrm{~atm}=10^{6} \mathrm{~Pa}=10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.
- with a copper pipe, i.e. a yield strength of $\approx 33 \mathrm{MPa}$ or a steel pipe, i.e. a yield strength of $\approx 350 \mathrm{MPa}$.


Figure 160: One quarter of a section through the pipe, the original domain (green) and the deformed domain (red)

### 9.30.1 As a plane strain problem

To examine this problem with FEMoctave start by defining the domain and the boundary conditions.

- Define the domain with the help of polar coordinates $R \leq r \leq R+\Delta R$ and $0 \leq \phi \leq \frac{\pi}{2}$. Use CreateMeshRect () to create a rectangular mesh and then MeshDeform () to create the domain in Figure 160.
- At the lower edge at $y=0$ the edge is free to move in $x$-direction and no displacement in $y$-direction. This is implemented with the code -21 in the function CreateMeshRect () for the boundary condition. See Table 6 on page 49 for the coding of the boundary conditions.
- At the left edge at $x=0$ the edge is free to move in $y$-direction and no displacement in $x$-direction. This is implemented with the code -12 for the boundary condition.
- At the inner edge at $r=R$ pressure $P$ is applied, leading to the code -33 for the boundary condition.
- At the outer edge at $r=R+\Delta R$ there is no force, leading to the code -22 for the boundary condition.
- For good accuracy second order elements are used by calling MeshUpgrade ().


## PipePressure.m

```
 E = 110e9; nu = 0.35; %%%% copper
 %%E = 200e9; nu = 0.25; %%% steel
 R = 0.1; dR = 0.01;
 nR = 5; nPhi = 51; %% number of layers in radial and angular direction
 Estar = E/(1-nu^2); nustar = nu/(1-nu);
 global P
 P = 10e5; %% 10 atm pressure
 FEMmesh = CreateMeshRect(linspace(R,R+dR,nR+1),linspace(0,pi/2,nPhi+1),-21,-12,-33,-22);
 function new_xy = Deform(xy)
 new_xy = [xy(:,1).*\operatorname{cos}(xy(:,2)),xy(:,1).*\operatorname{sin}(xy(:,2))];
 endfunction
 FEMmesh = MeshDeform(FEMmesh,'Deform');
 FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
```

With this domain and the correct boundary conditions the problem can be solved.

- Start by defining the force density corresponding to the inside pressure $P$, i.e.

$$
\text { at }\binom{R \cos \alpha}{R \sin \alpha} \quad \text { apply the force density } \quad\binom{P \cos \alpha}{P \sin \alpha} .
$$

- Assuming that the pipe will not stretch in the direction orthogonal to the cross section we end up with a plane strain problem. Thus use PlaneStrain () to find approximations to the displacements $u_{1}$ and $u_{2}$.


## PipePressure.m

```
 %% define the radial pressure to be applied on the inside
 function res = gN1(xy)
 global P
 angle = atan2(xy(:,2),xy(:,1)); res = P*cos(angle);
 endfunction
 function res = gN2(xy)
 global P
 angle = atan2(xy(:,2),xy(:,1)); res = P*sin(angle);
 endfunction
 [u1,u2] = PlaneStrain(FEMmesh,E,nu, {0,0},{0,0}, {'gN1','gN2'});
 factor = 400;
 figure(111); ShowDeformation(FEMmesh,u1,u2,factor); axis equal; xlabel('x'); ylabel('y');
```

The last few lines in the above code generate the domain visible in Figure 160.
With the displacements determine all stresses at the nodes by using EvaluateStress (). Since four return arguments are asked for the plane strain setup is used. Then use EvaluateVonMises () to find the values of the von Mises stress, visible in Figure 161(a). The maximal value of the von Mises stress is approximated by 10 MPa , which is smaller than the yield strength 33 MPa of copper. Thus the pipe is expected to withstand the applied pressure, but the margin of error is not very large. The pipe will start cracking on the inside, where the von Mises stress is largest.

## PipePressure.m

```
 [sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(FEMmesh,u1,u2,E,nu);
 vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);
 figure(2); FEMtrimesh(FEMmesh,vonMises); xlabel('x'); ylabel('y');
 title('von Mises stress'); view([25,25])
 vonMises_min_max = [min(vonMises),max(vonMises)]
 -->
vonMises_min_max = 8.3695e+06 1.0082e+07
```


(a) the von Mises stress

(b) the principal stresses

Figure 161: The von Mises stress in the cross section and the principal stresses along a radius of the pipe under pressure

To analyze the pipe further choose an angle, e.g. $\alpha=\frac{\pi}{4}=45^{\circ}$, and evaluate along a straight line with this angle for radii $R \leq r \leq R+\Delta R$.

- Start by selecting the angle $0 \leq \alpha \leq \frac{\pi}{2}$ and define the $x$ and $y$ values along the arc with this angle.
- Use the above values of the stresses and EvaluatePrincipalStress () find the values of the principle stresses at the nodes.
- Then calls of FEMgriddata() will determine the values of the principle stresses along the selected arc. Use $\sigma_{3}=\nu\left(\sigma_{1}+\sigma_{2}\right)$ to compute the third principle stress. Then a call of plot () will generate Figure 161(b).
- The minimal value $-9.9770 \cdot 10^{5} \approx-1 \mathrm{MPa}$ of $\sigma_{2}$ shows that this is the normal stress in radial direction on the inside of the pipe, coinciding with the given pressure $P$.
- The maximal value $-7 \cdot 10^{0} \approx 0 \mathrm{MPa}$ of $\sigma_{2}$ corresponds to the zero pressure on the outside.
- The values of $\sigma_{1}$ are considerably larger than the values of $\sigma_{2}$. This illustrates that the wall of the pipe is severely stretched in angular direction.

```
%% evaluation at one angle, all radii
alpha = pi/4; Nr = 101; Nmid = (Nr+1)/2; %% use an odd number for Nr
r = linspace(R,R+dR,Nr)'; x = r*cos(alpha); y = r*sin(alpha);
 [sigma_1,sigma_2] = EvaluatePrincipalStress(sigma_x,sigma_y,tau_xy);
 sigma_1r = FEMgriddata(FEMmesh,sigma_1,x,y);
 sigma_2r = FEMgriddata(FEMmesh,sigma_2,x,y);
 sigma_3r = nu*(sigma_1r+sigma_2r);
 sigma_2r_min_max = [min(sigma_2r),max(sigma_2r)]
```

```
figure(3); plot(r,[sigma_1r,sigma_2r,sigma_3r]);
 xlabel('radius'); ylabel('principal stresses')
 legend('\sigma_1','\sigma_2','\sigma_3','location','west')
-->
sigma_2r_min_max = -9.9770e+05 -7.1114e+03
```

At the midpoint in the wall of the pipe the stress matrix (tensor, to be precise) can be evaluated with the help of three calls of FEMgriddata().

$$
\left[\begin{array}{cc}
\sigma_{x} & \tau_{x y} \\
\tau_{x y} & \sigma_{y}
\end{array}\right] \approx\left[\begin{array}{ll}
+4.7572 & -5.2252 \\
-5.2252 & +4.7616
\end{array}\right] \cdot 10^{6}
$$

Then use a rotation matrix and the transformation rule for second order tensors to determine the stresses in the rotated coordinate system.

$$
\left[\begin{array}{cc}
+\cos \alpha & +\sin \alpha \\
-\sin \alpha & +\cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\sigma_{x} & \tau_{x y} \\
\tau_{x y} & \sigma_{y}
\end{array}\right]\left[\begin{array}{ll}
+\cos \alpha & -\sin \alpha \\
+\sin \alpha & +\cos \alpha
\end{array}\right] \approx\left[\begin{array}{cc}
-0.46582 & +0.00217 \\
+0.00217 & +9.9846
\end{array}\right] \cdot 10^{6}
$$

The result shows the normal, compressing pressure of -0.47 MPa in radial direction and the stretching pressure of +10 MPa in angular direction.

```
%% examine stress at middle point
x_mid = x(Nmid); y_mid = y (Nmid);
sigma_x = FEMgriddata(FEMmesh,sigma_x,x_mid,y_mid);
sigma_y = FEMgriddata(FEMmesh,sigma_y,x_mid,y_mid);
tau_xy = FEMgriddata(FEMmesh,tau_xy ,x_mid,y_mid);
RotMat = [cos(alpha) -sin(alpha);+sin(alpha) cos(alpha)];
stress = [sigma_x,tau_xy;tau_xy,sigma_y]
stress_rotated = RotMat'*stress*RotMat
-->
stress = 4.7572e+06 -5.2252e+06
 stress_rotated = -4.6582e+05 2.1668e+03
 2.1668e+03 9.9846e+06
```

With the provided code in PipePressure.m it is easy the modify the parameters of the above problem, e.g. change from copper to steel, examine larger radii or thinner walls.

For a pipe with a thin wall an analytical approximation is possible. Examine the section shown in Figure 160 and assume that the normal stress $\sigma_{\varphi}$ in angular direction is independent on the radius. Then use a balance of force law in $y$-direction and an integration over the angle to conclude

$$
\sigma_{\varphi} \Delta R=\int_{0}^{\pi / 2} P \sin \varphi R d \varphi=P R
$$

In the above example this leads to

$$
\sigma_{\varphi}=\frac{P R}{\Delta R}=\frac{10^{6} \cdot 0.1}{0.01}=10^{7}
$$

which is very close to the above result generated by FEMoctave. With the known angular stress and Hooke's law estimate the angular stretch, i.e.

$$
\varepsilon_{\varphi}=\frac{\sigma_{\varphi}}{E}=\frac{10^{7}}{110 \cdot 10^{9}} \approx 9.09 \cdot 10^{-5} .
$$

Since the angular stretching factor $\varepsilon_{\varphi}$ equals the radial stretching factor $\varepsilon_{r}$ estimate the change of radius by

$$
R \quad \longrightarrow \quad R\left(1+\varepsilon_{r}\right)=R+9.09 \cdot 10^{-6}
$$

This is not too far from the FEMoctave result of $\max \left\{u_{1}\right\} \approx 8.8 \cdot 10^{-6}$. The FEM approximation allows to examine pipes with thick walls and also examines behavior within the wall.

### 9.30.2 As an axisymmetric problem

The above problem can be examined as an axially symmetric problem. The domain is given by $R \leq r \leq R+d R$ and $0 \leq z \leq R$, and then rotated about the $z$-axis.

- At the inner edge at $x=r=R$ the pressure $P$ is applied in $r$-direction and the edge is free to move in $z$ direction.
- The outer edge at $x=r=R+d R$ is free to move.
- The lower and upper edge are fixed in $z$-direction and free to move in $x=r$-direction.

Start out be defining the parameters and generating the mesh. Then determine the radial displacement $u_{r}$ and the $z-$ displacement $u_{z}$ by calling AxiStress().

```
 R = 0.1; dR = 0.01;
 if 0 %% regular mesh
 Mesh = CreateMeshRect(R+linspace(0,dR,20),linspace(0,R,10),-21,-21,-32,-22);
 else %% irregular mesh
 Mesh = CreateMeshTriangle('Test',...
 [R 0 -21;R+dR 0 -22; R+dR R -21; R R -32],1e-5);
 endif
 Mesh = MeshUpgrade(Mesh,'quadratic');
 P = 10e5; E = 110e9; nu = 0.35; f = {0,0}; gD = {0,0}; gN = {P,0};
 [ur,uz] = AxiStress(Mesh,E,nu,f,gD,gN);
 figure(2); FEMtrimesh(Mesh,ur);
 xlabel('r'); ylabel('z'); zlabel('u_r')
 figure(3); FEMtrimesh(Mesh,uz);
 xlabel('r'); ylabel('z'); zlabel('u_z')
```

Determine all strains by using EvaluateStrainAxi().

## PipePressureAxi.m

[eps_xx,eps_yy,eps_zz,eps_xz] = EvaluateStrainAxi (Mesh, ur,uz);
figure(11); FEMtrimesh (Mesh,eps_xx)
xlabel('r'); ylabel('z'); zlabel('\epsilon_\{xx\}')
figure(12); FEMtrimesh (Mesh,eps_yy) xlabel('r'); ylabel('z'); zlabel('\epsilon_\{yy\}')
figure(13); FEMtrimesh (Mesh,eps_zz) xlabel('r'); ylabel('z'); zlabel('\epsilon_\{zz\}')

Determine the normal and shearing stresses by using EvaluateStressAxi().
PipePressureAxi.m
[sigma_x,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu);
figure(21); FEMtrimesh (Mesh,sigma_x) xlabel('r'); ylabel('z'); zlabel('\sigma_x')
figure(22); FEMtrimesh (Mesh,sigma_y) xlabel('r'); ylabel('z'); zlabel('\sigma_y')
figure(23); FEMtrimesh (Mesh,sigma_z) xlabel('r'); ylabel('z'); zlabel('\sigma_z')

Determine the von Mises stress, the principal stresses and the Tresca stress by using the functions of FEMoctave: EvaluateVonMisesAxi(), EvaluatePrincipalStressAxi() and EvaluateTrescaAxi(). The results coincide with the values from the plane strain approach in the previous section.

## PipePressureAxi.m

vonMises = EvaluateVonMisesAxi(sigma_x,sigma_y,sigma_z,tau_xz);
figure(24); FEMtrimesh (Mesh, vonMises)
xlabel('r'); ylabel('z'); zlabel('von Mises')
[sigma_1,sigma_2] = EvaluatePrincipalStressAxi(sigma_x,sigma_z,tau_xz);
$r=R+\operatorname{linspace}(0, d R, 100)$ ';

```
sigma_1i = FEMgriddata(Mesh,sigma_1,r,R/2*ones(size(r)));
sigma_2i = FEMgriddata(Mesh,sigma_2,r,R/2*ones(size(r)));
sigma_3i = FEMgriddata(Mesh,sigma_y,r,R/2\starones(size(r)));
figure(25); plot(r,sigma_1i,r,sigma_2i,r,sigma_3i); xlabel('r'); ylabel('z');
 legend('\sigma_1','\sigma_2','\sigma_3', 'location','west')
Tresca = EvaluateTrescaAxi(sigma_x,sigma_y,sigma_z,tau_xz);
figure(26); FEMtrimesh(Mesh,Tresca); xlabel('r'); ylabel('z'); zlabel('Tresca')
```


### 9.30.3 The analytical solution

For this axisymmetric setup use that $u_{z}=0$ and $u_{r}(r, z)=u_{r}(r)$ to determine an exact solution. The energy of the system is given by

$$
\frac{U\left(u_{r}\right)}{2 \pi}=\iint_{\Omega} \frac{r E}{2(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\left(\frac{\partial u_{r}}{\partial r}\right)^{2}+\frac{1}{r^{2}} u_{r}^{2}\right)+\frac{2 \nu}{r} u_{r} \frac{\partial u_{r}}{\partial r}\right) d A-R P u_{r}(R) .
$$

With the constant $k=\frac{E}{(1+\nu)(1-2 \nu)}$ and the notation $u(r)=u_{r}(r)$ the expression to be minimized is

$$
\begin{aligned}
U_{r}(u)= & \int_{R}^{R+\Delta R} \frac{r k}{2}\left((1-\nu)\left(\left(u^{\prime}(r)\right)^{2}+\frac{1}{r^{2}} u^{2}(r)\right)+\frac{2 \nu}{r} u(r) u^{\prime}(r)\right) d r-R P u(R) \\
= & \int_{R}^{R+\Delta R} \frac{k}{2}\left((1-\nu)\left(r\left(u^{\prime}(r)\right)^{2}+\frac{1}{r} u^{2}(r)\right)\right) d r+\left.\frac{k \nu}{2} u^{2}(r)\right|_{r=R} ^{R+\Delta R}-R P u(R) \\
U_{r}(u+\phi)= & U_{r}(u)+\int_{R}^{R+\Delta R} k(1-\nu)\left(r u^{\prime} \phi^{\prime}+\frac{1}{r} u \phi\right) d r+\left.k \nu u(r) \phi(r)\right|_{r=R} ^{R+\Delta R}-R P \phi(R)+O\left(\phi^{2}\right) \\
= & U_{r}(u)+\int_{R}^{R+\Delta R} k(1-\nu)\left(-\left(r u^{\prime}\right)^{\prime}+\frac{1}{r} u\right) \phi d r+ \\
& +\left.k\left((1-\nu) r u^{\prime}(r) \phi(r)+\nu u(r) \phi(r)\right)\right|_{r=R} ^{R+\Delta R}-R P \phi(R)+O\left(\phi^{2}\right) .
\end{aligned}
$$

Use the Euler-Lagrange equation for this problem and determine the exact solution.

$$
\begin{aligned}
0= & -r\left(r\left(u^{\prime}(r)\right)^{\prime}+u(r)\right. \\
\text { Ansatz: } & u(r)=r^{\alpha} \\
0= & -r\left(r \alpha r^{\alpha-1}\right)^{\prime}+r^{\alpha}=-\alpha^{2} r^{\alpha}+r^{\alpha} \\
0= & -\alpha^{2}+1 \quad \Longrightarrow \quad \alpha= \pm 1 \\
u(r)= & c_{1} r+c_{2} \frac{1}{r}
\end{aligned}
$$

The two natural boundary conditions are

$$
\begin{aligned}
(1-\nu) R u^{\prime}(R)+\nu u(R) & =-\frac{R}{k} P \\
(1-\nu)(R+\Delta R) u^{\prime}(R+\Delta R)+\nu u(R+\Delta R) & =0 .
\end{aligned}
$$

Using the above solution $u(r)=c_{1} r+c_{2} \frac{1}{r}$ leads to

$$
\begin{aligned}
R(1-\nu)\left(c_{1}-\frac{1}{R^{2}} c_{2}\right)+\nu\left(c_{1} R+c_{2} \frac{1}{R}\right) & =-\frac{R}{k} P \\
(R+\Delta R)(1-\nu)\left(c_{1}-\frac{1}{(R+\Delta R)^{2}} c_{2}\right)+\nu\left(c_{1}(R+\Delta R)+c_{2} \frac{1}{R+\Delta R}\right) & =0
\end{aligned}
$$

or as a system of linear equations

$$
\left[\begin{array}{cc}
R & -\frac{1-2 \nu}{R} \\
(R+\Delta R) & -\frac{1-2 \nu}{R+\Delta R}
\end{array}\right]\binom{c_{1}}{c_{2}}=\binom{-\frac{R}{k} P}{0} .
$$

Using the above parameters the solutions are $c_{1} \approx 1.7532 \cdot 10^{-5}$ and $c_{2} \approx 7.0714 \cdot 10^{-7}$ and thus

$$
u_{r}(r)=u(r)=c_{1} r+c_{2} \frac{1}{r} \approx 1.7532 \cdot 10^{-5} r+7.0714 \cdot 10^{-7} \frac{1}{r}
$$

Using the results in Section 4.15 .2 (page 86) all stresses and strains can be computed. The values coincide with the above FEM solutions.

```
 k = E/((1+nu)*(1-2*nu));
 c = [R - (1-2*nu)/R; (R+dR) - (1-2*nu)/(R+dR)]\[-R/k*P;0];
 r = R + linspace(0,dR,100)';
 u = c(1)*r + c(2)./r;
```


### 9.31 A sphere under hydrostatic pressure

A sphere with radius $R$ is submitted to a hydrostatic pressure $P$. This will lead to uniform strains $\varepsilon_{x x}=\varepsilon_{y y}=\varepsilon_{z z}=$ $-\frac{1-2 \nu}{E} P$ and no shearing strains. This leads to a constant energy density $w=\frac{3(1-2 \nu)}{2 E} P^{2}$. The numbers generated by the code SphereHydrostatic.m confirm these results.

- The material parameters $E=1$ and $\nu=0.25$ are rather theoretical.
- A quarter of a circle in the $x z$-plane with radius $R$ is rotated about the $z$-axis to model the upper half of the sphere.
- Along the lower edge require $u_{z}=0$ and no force in $x$-direction. Along the left edge require $u_{x}=u_{r}=0$ and no force in $z$-direction. Along the curved section at an angle $\alpha$ the force density is given by

$$
\vec{g}_{N}(\alpha)=-\binom{P \cos (\alpha)}{P \sin (\alpha)}
$$

and implemented by two functions gNr() and gNz() .

- A mesh is generated by CreateMeshTriangle () and then the displacements $u_{r}$ and $u_{z}$ determined by calling AxiStress (). The figures show these displacements.
- With a call of EvaluateStrainAxi() the strains are evaluated at the nodes, followed by a call of EvaluateEnergyDensi to find the energy density $W$.
- The total energy is the determined by the integral

$$
\text { Energy }=\iint_{\Omega} 2 \pi r W(r, z) d A
$$

and evaluated by calling FEMIntegrate (). Dividing by the volume $\frac{2}{3} R^{3}$ of the half sphere leads to the average energy density.

- The figures for the strains and the energy density are rather boring, since all these expressions are constant for the hydrostatic loading situation.


## SphereHydrostatic.m

```
global P
P = -0.1;
E = 1; nu = 0.25; R = 1;
N = 51; alpha = linspace(0,+pi/2,N)'; x = R*Cos(alpha); z = R*sin(alpha);
Dom = [0,0,-21; [x,z,-33*ones(size(x))]]; Dom(end,3) = -12;
function res = gNr(rz)
 global P
 alpha = atan2(rz(:,2),rz(:,1));
 res = P*\operatorname{cos(alpha);}
 endfunction
```

```
function res = gNz(rz)
 global P
 alpha = atan2(rz(:,2),rz(:,1));
 res = P*sin(alpha);
endfunction
Mesh = CreateMeshTriangle('quart',Dom,1e-2);
Mesh = MeshUpgrade(Mesh,'quadratic');
[ur,uz] = AxiStress(Mesh, E, nu, {0,0},{0,0},{'gNr','gNz'});
figure(1); FEMtrimesh(Mesh,ur); xlabel('r'); ylabel('z'); zlabel('u_r'); view([20,40])
figure(2); FEMtrimesh(Mesh,uz); xlabel('r'); ylabel('z'); zlabel('u_z'); view([-120,20])
[eps_xx,eps_yy,eps_zz,eps_xz] = EvaluateStrainAxi (Mesh,ur,uz);
figure(3); FEMtrimesh(Mesh,eps_xx); xlabel('r'); ylabel('z'); zlabel('eps_{xx}')
figure(4); FEMtrimesh(Mesh,eps_yy); xlabel('r'); ylabel('z'); zlabel('eps_{yy}')
figure(5); FEMtrimesh(Mesh,eps_zz); xlabel('r'); ylabel('z'); zlabel('eps_{zz}')
figure(6); FEMtrimesh(Mesh,eps_xz); xlabel('r'); ylabel('z'); zlabel('eps_{xz}')
W = EvaluateEnergyDensityAxi (Mesh,eps_xx,eps_yy,eps_zz,eps_xz,E,nu);
figure(7); FEMtrimesh(Mesh,W); xlabel('r'); ylabel('z'); zlabel('energy density')
r = Mesh.nodes(:,1);
EnergyIntegrated = FEMIntegrate(Mesh, 2*pi*r.*W)
EnergyDensity = EnergyIntegrated/(4/3*pi*R^3/2)
```


### 9.32 A crook with a weight attached

Examine the two L-shaped steel beams in Figure 162(a). Each beam has length $L=H=0.1$ with a square cross section of $0.01 \times 0.01$. The top edge is fixed and at the right end there is a force of 100 N (i.e. a weight of 10 kg ) pulling the beam downwards. The corner at $(x, y)=(0,0)$ is slightly rounded, since the highest stresses are expected to show up in this area, see Figure 162(b). The applied force of 100 N leads to a surface force density of $g N_{2}=\frac{100 \mathrm{~N}}{0.01^{2} \mathrm{~m}^{2}}=10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.

Start out by defining the domain and generating the mesh with the help of CreateMeshTriangle(). To avoid shear-locking use MeshUpgrade () to generate second order elements.

```
W Crook.m
 W = 0.01; H = 0.1; Load = 1e6;;
 Layers = 2*5; gap = W/5;
 if 0 %% no rounding
 Domain = [-W -W -22; -W H -11; 0 H -22; 0 gap -22;..
 0 0 -22; gap 0 -22; H O -23; H -W -22];
 else %% with a rounded corner
 Domain = [-W -W -22; -W H -11; 0 H -22; 0 gap -22;...
 gap*0.366 gap*0.366 -22; gap 0 -22; H O -23; H -W -22];
 endif
 FEMmesh = CreateMeshTriangle ('Crook1',Domain,(W/Layers)^2);
 figure(1); FEMtrimesh(FEMmesh); xlabel('x'); ylabel('y'); axis([-W 3*gap -W 3*gap])
 FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
```

Then find the approximate displacements $u_{1}$ and $u_{2}$ by calling PlaneStress (). The code segment below estimates the maximal vertical displacement by $-8.96 \cdot 10^{-4} \mathrm{~m}$, i.e. approximately -0.9 mm . Then examine the vertical displacement generated by the horizontal section of the crook. To verify the order of magnitude of the displacement use two elementary mechanical arguments:

1. For a bending Euler beam with the dimensions of one arm obtain

$$
u_{2}(L)=-\frac{4 F}{E W H^{3}} L^{3} \approx-\frac{4 \cdot 10^{2}}{200 \cdot 10^{9} 0.01^{4}} 0.1^{3}=-2 \cdot 10^{-4}
$$

i.e. a displacement of 0.2 mm .

(a) the domain

(b) the grid at the corner

Figure 162: Original and deformed domain for the crook with attached weight at the right edge
2. The slope of the lower arm at the left starting point is estimated by $-6.56 \cdot 10^{-3}$ and with the length $H=L=0.1$ this leads to another contribution of $\approx 0.56 \mathrm{~mm}$.

The sum of the two contributions is not too far from the result 0.9 mm by FEMoctave.

```
M
 E = 200e9; nu = 0.25; %%% steel
 [u1,u2] = PlaneStress(FEMmesh, E, nu, {0,0}, {0,0},{0,-Load});
 MaximalDisplacement = min(u2)
 [~ ,slope_x, ~] = FEMgriddata(FEMmesh,u2,0,-W/2)
 i = linspace(-0.01,0.1)'; xi =-0.005*ones(size(yi));
 u1i = FEMgriddata(FEMmesh,u1,xi,yi);
 figure(8); plot(yi,u1i)
 xlabel('y'); ylabel('u_1')
 p = polyfit(yi,uli,2); %% linear regression of a polynomial of degree 2
 slope = polyval([2*p(1) p(2)],-W/2) %% evaluate the derivative of the polynomial
 -->
 MaximalDisplacement = -8.9570e-04
 slope_x = -6.5645e-03
 slope = 6.6130e-03
```

To determine the slope of the horizontal beam at the left starting point the result by FEMoctave was used above. One can use an analytical approximation by using the moment applied to the vertical beam, generated by the force at the right endpoint. Along the centerline of the vertical beam use

$$
\frac{\partial^{2} u_{1}(y)}{\partial y^{2}}=\frac{-F(H+W / 2)}{E I}=\frac{-F(H+W / 2)}{E \frac{1}{12} W^{3} W} \approx 6.3 \cdot 10^{-2}
$$

Then use the conditions $u_{1}(H)=u_{1}(0.1)=\frac{\partial u_{1}(H)}{\partial y}=0$ at the top edge to estimate $\frac{\partial u_{1}(-W / 2)}{\partial y} \approx 6.62 \cdot 10^{-3}$, which is rather close to the FEMoctave result of $6.56 \cdot 10^{-3}$. The horizontal displacement $u_{1}$ along the centerline of the vertical beam is shown in Figure 165(a).

To generate Figure 162(a) with the scaled deformation also shown, start out by creating a coarse mesh and evaluate the displacement at those nodes. Then show the original and deformed mesh with different colors.

## Crook.m

```
CoarseMesh = CreateMeshRect([-W:W/3:H],[-W:W/3:H],-11,-11,-11,-11);
x = CoarseMesh.nodes(:,1); y = CoarseMesh.nodes(:,2);
u1i = FEMgriddata(FEMmesh,u1,x,y); u2i = FEMgriddata(FEMmesh,u2,x,y);
```

```
x(isnan(uli)) = NaN;
figure(2); clf; factor = H/10/abs(min(u2));
 trimesh(CoarseMesh.elem, x,y,'color','green','linewidth', 1); hold on;
 trimesh(CoarseMesh.elem,x+factor*u1i,y+factor*u2i,'color','red','linewidth',1)
 axis equal; hold off
```

To examine the mechanical load of the structure evaluate the stresses by calling EvaluateStress (). By asking for three return arguments a plane stress model is used. It is easy to generate graphs of the whole structure, but more insight might be gained by a closer look at some slices.

- At height $y=\frac{H}{2}=0.05$ examine the normal stress $\sigma_{y}$ in $y$-direction. The result in Figure 163(a) show a compression in the left segment and traction on the right. This corresponds to the bending on the vertical arm. By integrating $\sigma_{y}$ along this slice one should obtain the value of the force applied on the right edge of the crook, i.e.

$$
W \int_{-W}^{0} \sigma_{y}(x, 0.05) d x \approx \text { Force }=100
$$

For the moment with respect to the origin $(0,0)$ we expect

$$
W \int_{-W}^{0} x \sigma_{y}(x, 0.05) d x \approx \mathrm{H} \cdot \text { Force }=10 .
$$

Both results are confirmed by the code below. The values of the normal stress $\sigma_{x}$ are approximately zero.

- At $x=\frac{H}{2}=0.05$ examine the normal stress $\sigma_{x}$ in $x$-direction along a vertical slice. The result in Figure 163(b) shows a compression in the lower segment and traction in the upper segment. This corresponds to the downward bending on the horizontal arm. For the moment with respect to the point $\left(\frac{H}{2}, 0\right)$ we expect

$$
W \int_{-W}^{0} y \sigma_{x}(0.05, y) d y \approx \frac{1}{2} \mathrm{H} \cdot \text { Force }=5 .
$$

The values of the normal stress $\sigma_{y}$ are approximately zero. By integrating the shearing stress $\tau_{x y}$ obtain again the applied force, i.e.

$$
W \int_{-W}^{0} \tau_{x y}(0.05, y) d y \approx \text { Force }=-100
$$

- Observe that the stress values in the vertical arm are considerably larger than in the horizontal arm. The values in Figure 163(b) are at $x=0.05$. For larger values of $x$ the strains $\sigma_{x}$ will be even smaller.


## Crook.m

```
[sigma_x,sigma_y,tau_xy] = EvaluateStress(FEMmesh,u1,u2,E,nu);
dist = linspace(-W,0,100)'; HH = H/2*ones(size(dist));
sigma_y_slice_H = FEMgriddata(FEMmesh,sigma_y,dist,HH);
figure(3); plot(dist,sigma_y_slice_H/le6);
 xlabel('x'); ylabel('\sigma_y [MPa]');xlim([-W,0])
sigma_y_slice_H(isnan(sigma_y_slice_H)) = 0;
Integral_sigma_y = W*trapz(dist,sigma_Y_slice_H)
Integral_Moment = W*trapz(dist,dist.*sigma_y_slice_H)
sigma_x_slice_V = FEMgriddata(FEMmesh,sigma_x,HH,dist);
tau_xy_slice_V = FEMgriddata(FEMmesh,tau_xy,HH,dist);
figure(4); plot(dist,sigma_x_slice_V/1e6);
 xlabel('y'); ylabel('\sigma_x [MPa]');xlim([-W,0])
Integral_Moment_x = W*trapz(dist,dist.*sigma_x_slice_V)
Integral_tau_xy = W*trapz(dist,tau_xy_slice_V)
-->
Integral_sigma_y = 99.769
Integral_Moment = 10.002
Integral_Moment_x = 5.0005
Integral_tau_xy = -99.985
```



Figure 163: A horizontal slice with $\sigma_{y}$ shown and a vertical slice with $\sigma_{x}$ shown

Since steel is a ductile material one can use the von Mises stress to decide whether the crook will withstand the force of 100 N . Use EvaluateVonMises () to find the values of the von Mises stress at the nodes and then FEMtrisurf () and FEMtricontour () to generate Figure 164. The contour lines in Figure 164 are supplemented with the borders of the domain. The spikes of the von Mises stress at the corner $(0,0)$ should be no surprise to mechanical engineers. One possible measure to reduce the maximal value of von Mises is the rounding visible in Figure 162(b). To obtain more insight the von Mises stress is evaluated along the straight line connecting $(-W,-W)$ and ( 0,0 ), using FEMgriddata (), leading to Figure $165(\mathrm{~b})$. Since the yield strength of steel is $\approx 330 \mathrm{MPa}$ the crook should be able to support the force of 100 N .


Figure 164: The von Mises stress on the crook, as surface and level curves

```
 Crook.m
 vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy);
 figure(5); FEMtrisurf(FEMmesh,vonMises/le6);
 xlabel('x'); ylabel('y'); zlabel('von Mises [MPa]'); view(160,25)
 colorbar(); shading interp
 figure(6); clf; FEMtricontour(FEMmesh,vonMises/1e6,1e1*[0:0.5:6]);
 xlabel('x'); ylabel('y'); title('von Mises [MPa]');
```



Figure 165: The bending of the centerline of the vertical beam and the von Mises stress on the $45^{\circ}$ line through the origin

```
 caxis(1e2*[0 0.7]); axis equal; colorbar(); hold on
 plot([Domain(:,1);Domain(1,1)],[Domain(:,2);Domain(1, 2)],...
 'color','black','linewidth',1); hold off
dist = linspace(-W,gap,100)'; HH = H/2\starones(size(dist));
vonMises_slice = FEMgriddata(FEMmesh,vonMises,dist,dist);
figure(7); plot(dist,vonMises_slice*1e-6);
 xlabel('x,y'); ylabel('von Mises [MPa]')
```


### 9.33 A wrench

A classical example application for mechanical FEM is a wrench. With a digital image of a typical wrench the tool xinput () is used in Octave to grab the contour data from the screen and written to the file WrenchData.m, see [Stah22, §3.9]. Then rescale the contour to obtain a typical length of 0.15 m of the wrench in Figure 166(a). Then setup an appropriate configuration of the wrench.

- The material is steel with the parameters $E=200 \mathrm{GPa}$ and $\nu=0.25$.
- Most of the boundary is force free, thus with the code -22 , according to Table 6 on page 49 .
- Along the two horizontal sections on the very left the displacements are zero, modeling the screw head in the wrench. A closer look at the contour data shows that these are sections 1 and 4 of the contour, used with the code -11 for the boundary condition.
- The applied force is 100 N over a length of 0.05 m and width 0.005 m , leading to a force density of $\frac{100}{0.05 \cdot 0.005}=$ $4 \cdot 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$. This load is applied on segment 17 of the contour, used with the code -23 for no force in $x$ direction and the given load in $y$ direction.

With this data the mesh is generated by calling CreateMeshTriangle(). Then the mesh of linear elements should be upgraded to quadratic or cubic elements with the help of MeshUpgrade (). Then use PlaneStress () to solve for the displacements $u_{1}$ and $u_{2}$.

```
 Wrench.m
%% load the contour data
%% scale the contour data
%% select the order of the elements 1,2 or 3
```

```
BC = -22*ones(size(x)); %% default is a force free boundary
BC([1 4]) = -11; BC(17) = -23; %% fixed at the two horizontal section on the left
%% vertical force on top right segment
Load = 100/(0.05*0.005); 目 100 N, distributed over length 0.05 and width 0.005
Mesh = CreateMeshTriangle('Wrench',[x,y,BC],0.01^2/4); %% create the mesh
switch Order
 case 2 Mesh = MeshUpgrade(Mesh,'quadratic');
 case 3 Mesh = MeshUpgrade(Mesh,'cubic');
endswitch
E = 200e9; nu = 0.25; gN = {0,-Load}; %% data for steel
[u1,u2] = PlaneStress(Mesh,E,nu,{0,0},{0,0},gN); %% solve the plane stress problem
```



Figure 166: The deformed wrench and the stress $\sigma_{y}$ along upper edge with the applied load

With the solution the original and deformed shape can be displayed with the applied load visualized by a few vectors, see Figure 166(a).

```
 Wrench.m
 %%display the original and deformed wrench, with the applied force
 scale = 0.001*max(y)/max(u2);
 x_force = linspace(x(17),x(18),8); y_force = 0.038*ones(size(x_force))+0.02;
 vec_x = zeros(size(x_force)); vec_y = -0.02*ones(size(x_force));
 figure(1); clf
 trimesh(Mesh.elem,Mesh.nodes(:,1),Mesh.nodes (:, 2),...
 'color','green','linewidth',1); hold on
 trimesh(Mesh.elem,Mesh.nodes(:,1) +scale*u1,Mesh.nodes(:,2) +scale*u2,...
 'color','red','linewidth',1)
 quiver(x_force,y_force,vec_x,vec_y,0)
 hold off; axis equal; xlim([-0.01, 0.16])
```

Evaluate the stresses at the nodes, including the von Mises Stress. By asking for three return arguments the plane stress situation is used. By a piecewise linear interpolation and FEMgriddata () the vertical stress $\sigma_{y}$ can be evaluated along the upper edge, leading to Figure 166(b). The external load of -0.4 MPa is clearly visible.

```
\square Wrench.m —
 [sigma_x,sigma_y,tau_xy] = EvaluateStress(Mesh,u1,u2,E,nu); %% basic stress
 vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy); %% von Mises stress
 xi = linspace(0.05,0.15,101)'; yi = interp1(x(14:19),y(14:19),xi);
 sigma_y_interp = FEMgriddata(Mesh,sigma_y,xi,yi);
 figure(2); plot(xi,sigma_y_interp/le6)
 xlabel('x'); ylabel('\sigma_y [MPa]'); xlim([0.05,0.15])
```

Since steel is a ductile metal the von Mises stress can be used to examine the effect on the wrench. In Figure 167(a) find the surface plot of the von Mises stress. The highest stress is on the boundary at the mid section, but spikes are also visible at the sharp corners on the left. Figure 167 (b) shows the contour lines and the position of the highest and lowest von Mises stress. It should be no surprise that the section on the very right is almost stress free.

## Wrench.m

```
figure(3); clf; FEMtrimesh(Mesh,vonMises/1e6)
 zlabel('von Mises stress'); colorbar(); view([40 75])
 xlim([0 0.15]); ylim([-0.025 0.09]);
 set(gca, 'XTickLabel', [], 'yTickLabel', [], 'zTickLabel', [])
MaxVonMises = max(vonMises); MinVonMises = min(vonMises);
Max_Min_vonMises_MPa = [MaxVonMises,MinVonMises]/1e6
MaxInd = find(vonMises == MaxVonMises); MaxPosition = Mesh.nodes(MaxInd,:);
MinInd = find(vonMises == MinVonMises); MinPosition = Mesh.nodes(MinInd,:);
figure(4); clf; FEMtricontour(Mesh,vonMises/le6,41)
 hold on; plot([x;x(1)],[y;y(1)],'k');
 plot(MaxPosition(1),MaxPosition(2),'*r',MinPosition(1),MinPosition(2),'*b');
 hold off; axis equal
 -->
 Max_Min_vonMises_MPa = 1.2415e+01 2.4078e-03
```




Figure 167: Surface and contour plot of the von Mises stress in [MPa]

### 9.34 A rotating rubber cylinder

A cylinder with radius $R=0.2$ and height $2 H=0.2$ is rotating about the $z$-axis with 10 revolutions per second. The wall consist of a Silicone rubber of thickness 0.01 and cover and bottom are 0.02 thick. The goal is to determine the resulting deformation and the von Mises stress.

Using an axially symmetric setup only a cross section in the $y=0$ plane for $x=r>0$ have to be examined. Since the setup is symmetric with respect to the plane $z=0$ only the upper half has to be modeled, using the zero $z$ displacement at the lower edge.

Start by defining the parameters and generating the mesh. In this case third order elements are used. Then define the function for the centrifugal force and solve for the two displacements $u_{r}$ and $u_{z}$ with the help of AxiStress (). Then display the original and the deformed domain in Figure 168 and the displacements in Figure 169.

## RubberBox.m

```
rho = 1100; E = 1e6; nu = 0.47; %% Silicone rubber
H=0.1; R = 0.2; W = 0.01;
Contour = [0 H -11;0 H-2*W -22; R-2*W H-2*W -22; R-W H-2*W -22;
 R-W 0 -21; R 0 -22; R H-W -22; R-W H -22];
Mesh = CreateMeshTriangle('RubberBox',Contour, 3e-5);
```

```
Mesh = MeshUpgrade (Mesh,'cubic');
function res=fr(xy,dummy)
 freq = 10; omega = freq*2*pi; rho = 1100;
 res = rho*xy(:,1)*omega^2;
endfunction
[ur,uz] = AxiStress(Mesh,E,nu,{'fr',0},{0,0},{0,0});
figure(10); ShowDeformation(Mesh,ur,uz,1); axis equal; xlabel('x'); ylabel('y');
figure(11); FEMtrimesh(Mesh,ur); xlabel('r'); ylabel('z'); zlabel('u_r')
figure(12); FEMtrimesh(Mesh,uz); xlabel('r'); ylabel('z'); zlabel('u_z')
```



Figure 168: The upper half of the original and deformed domain for the rotating rubber box


Figure 169: The displacements $u_{r}$ and $u_{z}$ for the rotating rubber box

As last step evaluate the stresses and then the von Mises stress, leading to the surface and contour plots in Figure 170.

```
 RubberBox.m
 [sigma_x,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu) ;
 vonMises = EvaluateVonMisesAxi(sigma_x,sigma_y,sigma_z,tau_xz);
 figure(13); FEMtrimesh(Mesh,vonMises/le6)
 xlabel('r'); ylabel('z'); zlabel('von Mises [MPa]'); view([35 30])
```



Figure 170: The von Mises stress for the rotating rubber box

```
figure(14); clf; FEMtricontour(Mesh,vonMises/1e6)
 xlabel('r'); ylabel('z'); zlabel('von Mises [MPa]')
 hold on; plot([Contour(:,1);Contour(1,1)],[Contour(:,2);Contour(1,2)],'k')
 hold off; axis equal; colorbar; title('von Mises stress [MPa]')
```


### 9.35 A washer fastener examined as spring

In this example a washer fastener design is examined. The goal is to determine the force required to deform the washer.

### 9.35.1 The setup

- The material is aluminum, with density $\rho=2700 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, Young's modulus $E=70 \mathrm{GPa}$ and Poisson ratio $\nu=0.33$.
- The intersection of the washer with the plane $y=0$ is almost rectangular. The inner part is moved up slightly and there are two horizontal sections, one at the inner/upper location at height $z=0.001$ and the second at the lower/outer section at height $z=0$. Find the domain in Figure 171. The corners of the domain are given by the six points

| $r[\mathrm{~m}]$ | 0.0020 | 0.0020 | 0.0044 | 0.0050 | 0.0050 | 0.0026 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $z[\mathrm{~m}]$ | 0.0010 | 0.0004 | 0 | 0 | 0.0006 | 0.0010 |

and connected by straight line segments. This domain in then rotated about the $z$-axis to obtain the washer in $\mathbb{R}^{3}$.


Figure 171: The original and deformed domain of the washer

To determine the resulting deformation of the washer the boundary conditions have to be specified.

- The outer/lower edge at height $z=0$ is fixed in $z$-direction, but free in radial direction.
- The inner/upper edge at height $z=0.001$ is moved downward by 0.0001 m and free in radial direction.
- All other edges are force free.

With this information the boundary value problem can be solved, using the command AxiStress (). The code contains additional configurations with different boundary conditions on the inside and outside.

WasherSpring.m

```
pkg load femoctave
rho = 2700; E = 70e9; nu = 0.33; %% Aluminum
H = 0.001; Ri = 0.002; Ro = 0.005; D = 0.0006; H = 0.0004;
global Offset
Offset = 1*1e-4;
if 1 %% free sides
 Contour = [Ri H+D -22; Ri H -22;Ro-D 0 -21; Ro 0 -22; Ro D -22;Ri+D H+D -21];
elseif 0 %% clamped on the outside
 Contour = [Ri H+D -22; Ri H -22;Ro-D 0 -21; Ro 0 -12; Ro D -22;Ri+D H+D -21];
else %% clamped on both sides
 Contour = [Ri H+D -12; Ri H -22;Ro-D 0 -21; Ro 0 -12; Ro D -22;Ri+D H+D -21];
endif
Mesh = CreateMeshTriangle('Washer',Contour,2.5e-9);
%%Mesh = MeshUpgrade (Mesh,'quadratic');
Mesh = MeshUpgrade(Mesh,'cubic');
function res = gDz(xy,dummy)
 global Offset
 res = -Offset*(xy(:,2)>Offset);
endfunction
[ur,uz] = AxiStress(Mesh, E,nu, {0,0},{0,'gDz'},{0,0});
figure(10); ShowDeformation(Mesh,ur,uz,1); xlabel('r'); ylabel('z');
axis equal; xticks([2:5]/1000); yticks([0:0.5:1]/1000)
```

Display the radial displacement $u_{r}$ in Figure 172 and the height displacement $u_{z}$ in Figure 173.


Figure 172: The radial displacement $u_{r}$


Figure 173: The height displacement $u_{z}$

```
 figure(11); FEMtrimesh(Mesh,ur)
```

    figure(11); FEMtrimesh(Mesh,ur)
    xlabel('r'); ylabel('z'); zlabel('u_r')
    xlabel('r'); ylabel('z'); zlabel('u_r')
    xticks([2:5]/1000); yticks([0:0.5:1]/1000)
    xticks([2:5]/1000); yticks([0:0.5:1]/1000)
    Cx = [Contour(:,1);Contour(1,1)]; Cy = [Contour(:,2);Contour(1,2)];
    Cx = [Contour(:,1);Contour(1,1)]; Cy = [Contour(:,2);Contour(1,2)];
    figure(21); clf; FEMtricontour(Mesh,ur)
    figure(21); clf; FEMtricontour(Mesh,ur)
        hold on ; plot(Cx,Cy,'k'); hold off
        hold on ; plot(Cx,Cy,'k'); hold off
        xlabel('r'); ylabel('z'); title('u_r');
        xlabel('r'); ylabel('z'); title('u_r');
        axis equal; colorbar;xticks([2:5]/1000); yticks([0:0.5:1]/1000)
        axis equal; colorbar;xticks([2:5]/1000); yticks([0:0.5:1]/1000)
    figure(12); FEMtrimesh(Mesh,uz)
    figure(12); FEMtrimesh(Mesh,uz)
        xlabel('r'); ylabel('z'); zlabel('u_z');
        xlabel('r'); ylabel('z'); zlabel('u_z');
        xticks([2:5]/1000); yticks([0:0.5:1]/1000)
        xticks([2:5]/1000); yticks([0:0.5:1]/1000)
    figure(22); clf; FEMtricontour(Mesh,uz)
    figure(22); clf; FEMtricontour(Mesh,uz)
        hold on ; plot(Cx,Cy,'k'); hold off
        hold on ; plot(Cx,Cy,'k'); hold off
        xlabel('r'); ylabel('z'); title('u_z');
        xlabel('r'); ylabel('z'); title('u_z');
        axis equal; colorbar;xticks([2:5]/1000); yticks([0:0.5:1]/1000)
    ```
 axis equal; colorbar;xticks([2:5]/1000); yticks([0:0.5:1]/1000)
```


### 9.35.2 Evaluate the force by integrating the normal stress

To determine the force $F$ required to push the upper edge down by 0.1 mm use the normal stress $\sigma_{z}$ in vertical direction.

```
\ WasherSpring.m
 [sigma_x,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu) ;
 figure(13); FEMtrimesh(Mesh,sigma_z*1e-6)
 xlabel('r'); ylabel('z'); zlabel('\sigma_z [MPa]');
 xticks([2:5]/1000); yticks([0:0.5:1]/1000)
 figure(23); clf; FEMtricontour(Mesh,sigma_z/1e6,[-20:1:20]*100)
 hold on ; plot(Cx,Cy,'k'); hold off
 xlabel('r'); ylabel('z'); title('\sigma_z [MPa]');
 axis equal; colorbar;xticks([2:5]/1000); yticks([0:0.5:1]/1000)
```

At any height $0 \leq h \leq 0.001$ examine the slice $a \leq r \leq b$ in the domain visible in Figure 171 and perform an integration to determine $F$.

$$
F=2 \pi \int_{r=a}^{b} r \sigma_{z}(r, h) d r
$$

Examine the graph of the normal stress $\sigma_{z}$ in Figure 174 and observe the singularities at the corners of the edges with fixed displacement. These singularities cause serious numerical trouble when trying to integrate along the upper or lower edges.


Figure 174: The normal stress $\sigma_{z}$

On a mesh with elements of order 3 with 5968 free nodes obtain the numerical results ${ }^{42}$

$$
\begin{aligned}
\mathrm{F}_{\text {up }} & \approx 1415.1 \mathrm{~N} \\
\mathrm{~F}_{\text {middle }} & \approx 2401.6 \mathrm{~N} \\
\mathrm{~F}_{\text {low }} & \approx 1085.8 \mathrm{~N}
\end{aligned}
$$

and the graphs in Figure 175. By changing the element types or the size of the meshes the results at the lower and upper edges can change substantially, while the result at half height remains stable and thus is more reliable. By changing the height of the slice in the code below (modify the value of s) one may observe that the results for heights between $20 \%$ and $80 \%$ are stable.


Figure 175: The normal pressures $\sigma_{z}$ along upper and lower edge and at half height

```
r = linspace(0,D,1000)';
 sigma_up = FEMgriddata(Mesh,sigma_z,Ri+r,(H+D) *ones(size(r)));
 figure(31); plot(Ri+r,sigma_up); xlabel('r'); ylabel('\sigma_z'); title('upper edge')
 xlim([Ri,Ri+D]); xticks([2:0.2:2.6]/1000);
 Force_up = 2\starpi*trapz(Ri+r,sigma_up.*(Ri+r))
 sigma_low = FEMgriddata(Mesh,sigma_z,Ro-D+r,zeros(size(r)));
 figure(32); plot(Ro-D+r,sigma_low); xlabel('r'); ylabel('\sigma_z'); title('lower egde')
 xlim([Ro-D, Ro]); xticks([4.4:0.2:5]/1000);
```

[^31]```
Force_low = 2*pi*trapz(Ro-D+r,sigma_low.*(Ro-D+r))
s = 0.5; %% select the height
r_mid = linspace(Ri,Ro,1000)';
sigma_mid = FEMgriddata(Mesh,sigma_z,r_mid,s*(H+D) *ones(size(r_mid)));
ind = find(isfinite(sigma_mid));
r_mid = r_mid(ind); sigma_mid = sigma_mid(ind);
figure(33); plot(r_mid,sigma_mid); xlabel('r'); ylabel('\sigma_z');
    title('at half height'); xticks([2:5]/1000);
Force_mid = 2*pi*trapz(r_mid,sigma_mid.*r_mid)
```


9.35.3 Evaluate the force by an energy argument

Since the above evaluation of the required force F is rather delicate, it is a good idea to examine an alternative approach. Since the problem is linear the force F depends linearly on the displacement d of the upper edge, i.e. with a displacement $0 \leq s \leq d$ obtain $F(s)=k s=\frac{s}{d} F(d)$. An elementary integration leads to the energy U in the system.

$$
U=\int_{0}^{d} F(s) d s=\int_{0}^{d} \frac{s}{d} F(d) d s=\frac{1}{2} d F(d)
$$

Thus find the force $F=F(d)=\frac{2 U}{d}$. Using the results in Section 8.7 (starting on page 194) the elastic energy U is given by

$$
\begin{aligned}
U(\vec{u})= & 2 \pi \iint_{\Omega} \frac{r E}{2(1+\nu)(1-2 \nu)}\left((1-\nu)\left(\left(\frac{\partial u_{r}}{\partial r}\right)^{2}+\left(\frac{\partial u_{z}}{\partial z}\right)^{2}+\frac{1}{r^{2}} u_{r}^{2}\right)+\right. \\
& \left.+2 \nu\left(\left(\frac{\partial u_{r}}{\partial r}\right)\left(\frac{\partial u_{z}}{\partial z}\right)+\frac{1}{r} u_{r}\left(\frac{\partial u_{r}}{\partial r}+\frac{\partial u_{z}}{\partial z}\right)\right)\right) d A+ \\
& +2 \pi \iint_{\Omega} \frac{r E}{1+\nu} \frac{1}{4}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right)^{2} d A .
\end{aligned}
$$

Since the displacements u_{r} and u_{z} are available use the function FEMIntegrate (). It is best ${ }^{43}$ to evaluate the displacements and their partial derivatives at the Gauss points by using FEMEvaluateGP () and then integrate. For this example the result is $F=2402.1 \mathrm{~N}$, which is close to the above integration at half height of the normal stress σ_{z}.

WasherSpring.m

```
[urGP,ur_rz] = FEMEvaluateGP(Mesh,ur); [uzGP,uz_rz] = FEMEvaluateGP (Mesh,uz);
rGP = Mesh.GP(:,1);
w = E/ (2* (1+nu)* (1-2*nu)) *rGP.* ((1-nu)* (ur_rz(:,1).^2+uz_rz(:,2).^2+(urGP./rGP).^2) ...
        + 2*nu*(ur_rz(:,1).*uz_rz(:,2) +1./rGP.*urGP.*(ur_rz(:,1)+uz_rz(:,2))))...
        +E/(4*(1+nu))*rGP.*(ur_rz(:,2) +uz_rz(:,1)).^2;
U_elast = 2*pi*FEMIntegrate(Mesh,w);
Force_energy = 2*U_elast/Offset
```


9.35.4 Comparison of linear, quadratic and cubic elements

The above results were generated with a mesh consisting of 1294 triangle and piecewise cubic functions. It is easy to recompute, using the same number of triangles, but linear or quadratic functions. Find the results in Table 18.

- The FEM algorithm is minimizing the energy U of the system amongst the functions to be used. The space of piecewise linear functions is a strict subspace of the piecewise quadratic functions. Thus the minimal energy will be smaller when using elements of order 2 than with elements of order 1. As a consequence linear element will overestimate the resulting force $F=\frac{2 U}{d}$.
- The space of piecewise quadratic functions is a strict subspace of the piecewise cubic functions. Thus the minimal energy will be smaller when using elements of order 3 than with elements of order 1 . The force F evaluated with elements of order 3 will be the smallest. This is confirmed in Table 18.

[^32]- Using finer meshes will lead to smaller minimal energies U and thus smaller forces F.
- The estimates in Section 5.4 on page 105 lead to factors of $0.5,2$ or 4.5 for the ratio of number of nodes divided by the number of triangles for linear, quadratic or cubic elements. This is confirmed in Table 18.

| element type | linear | quadratic | cubic |
| :--- | :---: | :---: | :---: |
| number of nodes | 696 | 2685 | 5968 |
| elastic energy U | 0.12726 | 0.12118 | 0.12010 |
| force $F=\frac{2 U}{d}$ | 2545.2 | 2423.3 | 2402.1 |

Table 18: Comparison of different elements for the washer fastener example

9.35.5 Effect of different boundary conditions

The above setup can be modified by changing the boundary conditions at the inner or outer edge.

- In the original setup both sides are free to move in radial direction.
- The second setup prevents the outer side to move in radial direction.
- The third setup prevents both sides to move in radial direction.

This is implemented by switches at in the first section of the code. The parameter contour contains the values of the flags indicating the boundary conditions on the vertical segments.

```
if 1 %% free sides
    Contour = [Ri H+D -22; Ri H -22;Ro-D 0 -21; Ro 0 -22; Ro D -22;Ri+D H+D -21];
elseif 0 %% clamped on the outside
    Contour = [Ri H+D -22; Ri H -22;Ro-D 0 -21; Ro 0 -12; Ro D -22;Ri+D H+D -21];
else %% clamped on both sides
    Contour = [Ri H+D -12; Ri H -22;Ro-D 0 -21; Ro 0 -12; Ro D -22;Ri+D H+D -21];
endif
```

The results computed by the energy argument are

$$
\begin{array}{lll}
F & =2402.1 \mathrm{~N} & \text { with both sides free } \\
F & =2880.4 \mathrm{~N} & \text { with inner side free and outer side fixed } \\
F & =3809.1 \mathrm{~N} & \text { with both sides fixed }
\end{array}
$$

The additional constraints lead to a stiffer system, as expected.

9.36 A water dam

A water dam is deformed by its own weight and the water it should hold back. The code WaterDam.m below is a naive description of such a situation and generates the results in Figure 176.

- The code allows to select different shapes of the dam and different water levels. Modify the value of Hwater .
- By setting the density of the dam material to zero generate the stresses caused by the water only, i.e. use rho = 0 *2.4e3; .
- Different shapes of the dam can be examined by selecting values of CASE .

Figure 176: The normal stresses and the von Mises stress in a water dam

```
global H Hwater BaseLeft
```

global H Hwater BaseLeft
H = 30; Base = 0. 7*H; Crest = 0. 2*H; Hwater = 0.9*H; BaseLeft = H*0.2;
H = 30; Base = 0. 7*H; Crest = 0. 2*H; Hwater = 0.9*H; BaseLeft = H*0.2;
E = 20e9; nu = 0.2;
E = 20e9; nu = 0.2;
CASE = 3
CASE = 3
switch CASE
switch CASE
case 1 %% no crack
case 1 %% no crack
xy = [0,0,-11;Base,0,-22;Crest,H,-22;0,H,-33];
xy = [0,0,-11;Base,0,-22;Crest,H,-22;0,H,-33];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy (1,2)];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy (1,2)];
case 2 %% with crack
case 2 %% with crack
h = 0.1; depth = 1;
h = 0.1; depth = 1;
xy = [0,0,-11;Base, 0,-22;Crest,H,-22;0,H,-33;0,H/2+h,-22; depth,H/2,-22;0,H/2-h,-33];
xy = [0,0,-11;Base, 0,-22;Crest,H,-22;0,H,-33;0,H/2+h,-22; depth,H/2,-22;0,H/2-h,-33];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];
case 3 %% with foot
case 3 %% with foot
BaseLeft = H*0.2;
BaseLeft = H*0.2;
xy = [-BaseLeft,0,-11;Base,0,-22;Crest,H,-22;0,H,-33;0,BaseLeft,-33];
xy = [-BaseLeft,0,-11;Base,0,-22;Crest,H,-22;0,H,-33;0,BaseLeft,-33];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];
case 4 %% with slope on both sides
case 4 %% with slope on both sides
BaseLeft = H*0.2;
BaseLeft = H*0.2;
xy = [-BaseLeft,0,-11;Base, 0,-22;Crest, H,-22;0,H,-33];
xy = [-BaseLeft,0,-11;Base, 0,-22;Crest, H,-22;0,H,-33];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];
x = [xy(:,1);xy(1,1)]; y = [xy(:,2);xy(1,2)];
endswitch
endswitch
FEMmesh = CreateMeshTriangle('Dam',xy,1);
FEMmesh = CreateMeshTriangle('Dam',xy,1);
FEMmesh = MeshUpgrade(FEMmesh,'cubic');
FEMmesh = MeshUpgrade(FEMmesh,'cubic');
figure(1); FEMtrimesh(FEMmesh); xlabel('x'); ylabel('h')
figure(1); FEMtrimesh(FEMmesh); xlabel('x'); ylabel('h')
function res = f_dam(xy,dummy)
function res = f_dam(xy,dummy)
global H BaseLeft
global H BaseLeft
rho = 2.4e3;
rho = 2.4e3;
res = -9.81*rho*(H-xy(:,2));
res = -9.81*rho*(H-xy(:,2));
endfunction
endfunction
switch CASE %% different surface pressures
switch CASE %% different surface pressures
case {1,2}
case {1,2}
function res = px(xy,dummy)
function res = px(xy,dummy)
global Hwater
global Hwater
res = +9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*(xy(:,2)<Hwater);
res = +9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*(xy(:,2)<Hwater);
endfunction
endfunction
function res = ph(xy,dummy)
function res = ph(xy,dummy)
global Hwater
global Hwater
res = +0*9.81e3* (Hwater-xy(:,2)).* (xy (:,1)<eps).*(xy (:, 2)<Hwater);
res = +0*9.81e3* (Hwater-xy(:,2)).* (xy (:,1)<eps).*(xy (:, 2)<Hwater);
endfunction

```
endfunction
```

```
case 3
    function res = px(xy,dummy)
        global Hwater BaseLeft
        res = +9.81e3*(Hwater-xy (:, 2)).* (xy(:,1)<eps).*....
                        ((xy (:, 2) <Hwater).* (xy (:, 2) >BaseLeft) +1/sqrt (2) * (xy (:, 2)<=BaseLeft)) ;
    endfunction
    function res = ph(xy,dummy)
        global Hwater BaseLeft
        res = +9.81e3* (Hwater-xy(:,2)).*(xy (:,1)<eps).*(xy (:, 2)<=BaseLeft)/sqrt (2);
    endfunction
case 4
    function res = px(xy,dummy)
        global Hwater BaseLeft H
        alpha = atan(BaseLeft/H);
        res = +9.81e3*(Hwater-xy(:,2)).* (xy(:,1)<eps).*....
                ((xy (:, 2) <Hwater).* (xy (:,2)>BaseLeft) +cos(alpha) * (xy (:, 2) <=BaseLeft));
    endfunction
    function res = ph(xy,dummy)
        global Hwater BaseLeft H
        alpha = atan(BaseLeft/H);
        res = +9.81e3*(Hwater-xy(:,2)).*(xy(:,1)<eps).*(xy(:,2)<=BaseLeft) *sin(alpha);
    endfunction
endswitch
[u1,u2] = PlaneStrain(FEMmesh,E,nu, {0,'f_dam'},{0,0},{'px','ph'});
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(FEMmesh,u1,u2,E,nu);
vonMises = EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);
figure(2); FEMtrimesh(FEMmesh,u1);
        xlabel('x'); ylabel('h'); zlabel('u_x'); view([-120,20])
figure(3); FEMtrimesh(FEMmesh,u2);
        xlabel('x'); ylabel('h'); zlabel('u_h'); view([-120,20])
figure(11); FEMtrimesh(FEMmesh,sigma_Y*le-6);
        xlabel('x'); ylabel('h'); zlabel('\sigma_h [MPa]'); view([60,20])
figure(21); clf; FEMtricontour(FEMmesh,sigma_y*1e-6);
        xlabel('x'); ylabel('h'); colorbar();
        hold on; plot(x,y,'k'); title('\sigma_h [MPa]')
figure(12); FEMtrimesh(FEMmesh,sigma_x*1e-6);
        xlabel('x'); ylabel('h'); zlabel('\sigma_x [MPa]'); view([60,20])
figure(22); clf; FEMtricontour(FEMmesh,sigma_x*le-6);
        xlabel('x'); ylabel('h'); colorbar()
        hold on; plot(x,y,'k'); title('\sigma_x [MPa]')
figure(13); FEMtrimesh(FEMmesh,vonMises*1e-6);
        xlabel('x'); ylabel('h'); zlabel('von Mises [MPa]'); view([60,20])
figure(23); clf; FEMtricontour(FEMmesh,vonMises*1e-6);
        xlabel('x'); ylabel('h'); colorbar()
        hold on; plot(x,y,'k'); title('von Mises [MPa]')
    Max_vonMises = max(vonMises)/1e6
```


9.37 A tuning fork

A tuning fork is used to generate a sound signal with a given, stable frequency. The sound is generated by an eigen mode of the fork. On the web page https://www.acs.psu.edu/drussell/Demos/TuningFork/fork-modes.html find a typical tuning fork and the most important eigen modes. The code TuningFork.m below allows to generate and analyze a few of the planar modes, leading to Figure 177.

- On the second line of the code you may change the dimensions of the tuning fork.
- With the value of CASE switch between different boundary conditions:

CASE = 1 only the lower edge is fixed.
CASE $=2$ the lower edge and the two sides at the bottom are fixed.

- With the value of MODE select for which mode the deformation is analyzed and visualized.

Figure 177: Three eigenmodes of a tuning fork

TuningFork.m

```
angle = linspace(0,pi,11); halfangle = linspace(0,pi/2,6);
R1 = 5.5; R2 = 6.25; H1 = 108.5; H2 = H1+15;
x = [R1*cos(fliplr(angle)),R1,R1+7,R1+7-R2*sin(halfangle),R1+7-R2,-R1-7+R2, ...
    -R1-7+R2*sin(fliplr(halfangle)),-R1-7,-R1]/1000;
y = [-R1*sin(angle),H1,H1,H1-H2-R2+R2*Cos (halfangle),-50,-50, ...
    H1-H2-R2+R2*Cos(fliplr(halfangle)),H1,H1]/1000;
%%figure(1); plot(x,y); axis equal
CASE = 1;
IND = find(y==-50/1000,1);
switch CASE
case 1 %% only lower edge fixed
    xy = [x',y',-22*ones(length(x),1)]; xy(IND,3)=-11;
case 2 %% lower edge and sides fixed
    xy = [x',y',-22*ones(length(x),1)]; xy([IND-1:IND+1],3)=-11;
endswitch
FEMmesh = CreateMeshTriangle('Fork',xy,3e-6);
FEMmesh = MeshUpgrade(FEMmesh,'quadratic');
E = 200e9; nu = 0.21; rho = 7.9e3; %% use SI units
[la,u1all,u2all] = PlaneStressEig(FEMmesh,E,nu,rho,6);
```

```
Frequencies = sqrt(la')/(2*pi)
Mode = 2;
u1 = u1all(:,Mode); u2 = u2all(:,Mode);
MaxDisp = max(max(abs(u1)),max(abs(u2))); %% scale the values
u1 = 0.005*u1/MaxDisp; u2 = 0.005*u2/MaxDisp;
figure(11); FEMtrimesh(FEMmesh,u1); xlabel('x'); ylabel('y'); zlabel('u_1')
figure(12); FEMtrimesh(FEMmesh,u2); xlabel('x'); ylabel('y'); zlabel('u_2')
[sigma_x,sigma_y,tau_xy] = EvaluateStress(FEMmesh,u1,u2,E,nu);
figure(21); FEMtrimesh(FEMmesh,sigma_x/le6); xlabel('x'); ylabel('y'); zlabel('\sigma_x')
figure(22); FEMtrimesh(FEMmesh,sigma_y/le6); xlabel('x'); ylabel('y'); zlabel('\sigma_y')
figure(23); FEMtrimesh(FEMmesh,tau_xy/le6); xlabel('x'); ylabel('y'); zlabel('\tau_{xy}')
figure(30); ShowDeformation(FEMmesh,u1,u2,1); axis equal
-->
Frequencies = 321.78 425.64 1602.83 2612.85 4077.76 7000.23
```


9.38 Vibrations of a ring

The planar eigen modes of a vibrationg ring can be evaluated with the help of PlaneStressEig(). The code in RingVibration.m evaluates the first twenty frequencies and the corresponding modes. Twelve modes are shown in Figure 178.

- The first 3 frequencies are (approximately) zero. They correspond to translations in horizontal and vertical direction and a pure rotation. Since no constraints are applied the ring is free to move, without deformation. See also Section 5.14 for the consequence of missing boundary constraints.
- Modes 4 and above always show up in pairs with the same frequency and rotated shape of the eigen modes. The 2 through 6 maximal and minimal deformations are clearly visible.
- For the computations in RingVibration.m quadratic elements are used. This avoids the effect of shear locking and increases the accuracy. Since only (approximately) 3 layer of elements are used, the effect of shear-locking is essential. If linear elements are used the resulting frequencies are considerably higher and the differences in the pairs is larger.
- The code in RingVibration.m uses the plane stress assumption, i.e. no forces in the z-direction. If the ring is supposed to be a section of a long circular tube, which can not move in z-direction, then use the plan strain assumption, i.e. the command PlaneStrainEig(). The frequencies will be slightly higher, since the setup is stiffer, $E^{\star}>E$ and $\nu^{\star}>\nu$.

```
R = 0.03; D = 0.002;
Nring = 36; angles = linspace(0,2*pi,Nring+1)'; angles = angles(1:end-1);
Ring = [(R+D/2)*cos(angles), (R+D/2)*sin(angles), -22*ones(size(angles))];
Hole.name = 'Hole';
Hole.border = [(R-D/2) *cos(angles),(R-D/2)*sin(angles), -22*ones(size(angles))];
Hole.point = [0,0.01];
FEMmesh = CreateMeshTriangle('Ring',Ring,5e-7,Hole);
FEMmesh = MeshUpgrade(FEMmesh, 'quadratic')
E = 200e9; nu = 0.25; rho = 8e3; %% steel
Nmodes = 20;
[lambda,u1_all,u2_all] = PlaneStressEig(FEMmesh,E,nu,rho,Nmodes);
frequencies = sqrt(abs(lambda'))/(2*pi)
for Mode = 1:Nmodes
    u1 = u1_all(:,Mode); u2 = u2_all(:,Mode); scale = 3e-3/(max(abs([u1;u2])));
```


(a) $f=0 \mathrm{~Hz}$

(d) $f=1^{\prime} 368 \mathrm{~Hz}$

(g) $f=3^{\prime} 856 \mathrm{~Hz}$

(j) $f=11^{\prime} 825 \mathrm{~Hz}$

(b) $f=0 \mathrm{~Hz}$

(e) $f=1^{\prime} 368 \mathrm{~Hz}$

(h) $f=7^{\prime} 357 \mathrm{~Hz}$

(k) $f=11^{\prime} 825 \mathrm{~Hz}$

(c) $f=0 \mathrm{~Hz}$

(f) $f=3^{\prime} 856 \mathrm{~Hz}$

(i) $f=7^{\prime} 387 \mathrm{~Hz}$

(l) $f=17^{\prime} 219 \mathrm{~Hz}$

Figure 178: The first twelve eigen modes of a vibration ring

```
    figure(10+Mode); ShowDeformation(FEMmesh,u1,u2,scale); axis equal;
    title(sprintf('mode %i',Mode))
endfor
-->
Frequencies = 3.7599e-3 6.9476e-3 8.9547e-3 1.3678e+3 1.3678e+3 3.8556e+3
\begin{tabular}{lllllll}
\(3.8556 e+3\) & \(7.3570 \mathrm{e}+3\) & \(7.3571 \mathrm{e}+3\) & \(1.1825 \mathrm{e}+4\) & \(1.1825 \mathrm{e}+4\) & \(1.7219 \mathrm{e}+4\)
\end{tabular}
```

Figure 178 might indicate that the deformation of the ring is strictly in radial direction, but this is not the case. For each of the modes there is a movement u_{r} in radial direction, combined with a movement u_{ϕ} in angular direction. At a point $R(\cos (\phi), \sin (\phi))$ on the center line of the ring determine the radial and angular defection by

$$
u_{r}(\phi)=\cos (\phi) u_{1}(\phi)+\sin (\phi) u_{2}(\phi) \quad \text { and } \quad u_{\phi}(\phi)=-\sin (\phi) u_{1}(\phi)+\cos (\phi) u_{2}(\phi) .
$$

There is a strong interaction between the radial and angular movements ${ }^{44}$. Evaluate these radial and angular deformations along the center line $(x, y)=R \cos (\phi), \sin (\phi))$ and use a linear regression of the form

$$
u_{r}(\phi)=c_{1}+c_{2} \cos (n \phi)+c_{3} \sin (n \phi) \quad \text { and } \quad u_{\phi}(\phi)=d_{1}+d_{2} \cos (n \phi)+d_{3} \sin (n \phi) .
$$

In the code RingVibrationMode.m below $n=3$ is used for mode 7 , since there are 3 outer arcs visible in Figure 178. The resulting numbers and Figure 179 confirm that the deformations are strictly trigonometric, FEM data and best fit can not be distinguished.

- For Mode $=7$ the numerical results show that the phase difference between the radial and angular movement is given by -90°. A point on the center line of the ring moves according to

$$
\binom{u_{r}(t, \phi)}{u_{\phi}(t, \phi)}=A \cos (\sqrt{\lambda} t)\binom{\phi_{r}(\phi)}{u_{\phi}(\phi)},
$$

i.e. oscillations along a straight line. For this mode at an angle ϕ_{0} of a point halfway between the maximal amplitude for u_{r} and zero amplitude (i.e. an offset of $15^{\circ}=\frac{360^{\circ}}{3.8}$ of a maximal radial deflection in Figures 178 or 179) find

$$
\binom{u_{r}\left(t, \phi_{0}\right)}{u_{\phi}\left(t, \phi_{0}\right)} \approx \frac{A}{\sqrt{2}} \cos (\sqrt{\lambda} t)\binom{0.77}{0.25}
$$

A similar result is correct for (almost) all modes, with different values for n.

- Modes 1, 2 and 3 are of the form $c_{1} \cos (\phi)+c_{2} \sin (\phi)$ and correspond to pure translations and rotations.
- Mode 16 is special: it a purely radial displacement, i.e. $u_{\phi} \approx 0$. Modes 19 and 20 are superpositions of purely radial displacement and $c_{1} \cos (\phi)+c_{2} \sin (\phi)$. These special modes are the reason for the if. .elseif...endif construction in the first lines of RingVibrationMode.m.

RingVibrationMode.m

```
%% this code requires that RingVibration was run first
Mode = 7
if Mode<16 n = floor(Mode/2)
elseif Mode<19 n = floor((Mode-1)/2)
else n = floor((Mode - 17)/2) endif
phi = linspace(0,2*pi,200)'; x = R*cos(phi); y = R*sin(phi);
ul_r = FEMgriddata(FEMmesh,u1_all(:,Mode),x,y);
u2_r = FEMgriddata(FEMmesh,u2_all(:,Mode),x,y);
ur = cos(phi).*ul_r + sin(phi).*u2_r;
uphi = -sin(phi).*u1_r + cos(phi).*u2_r;
M = [ones(size(phi)),cos(n*phi),sin(n*phi)]; p = LinearRegression(M,ur);
dr = p(1); Amp_r = sqrt(p(2)^2+p(3)^2); phase_r = atan2(p(2),p(3))/pi*180;
```

[^33]
(a) radial displacement u_{r}

(b) angular displacement u_{ϕ}

Figure 179: Radial displacement u_{r} and angular displacement u_{ϕ} for mode 7. Shown are the FEM data and the best fit of the form $c_{1}+c_{2} \cos (n \phi)+c_{3} \sin (n \phi)$ with $n=3$.

```
disp(sprintf('Results for u_r: dr = %g, amplitude = %g, phase_r = %g',dr,Amp_r,phase_r))
ur_fit = M*p;
figure(101); plot(phi*180/pi,ur,'g',phi/pi*180,ur_fit,'b'); xlim([0,360])
    xlabel('phi [deg]'); ylabel('u_r'); legend('data','fit');
p = LinearRegression(M,uphi);
dphi = p(1); Amp_phi = sqrt(p(2)^2+p(3)^2); phase_phi = atan2(p(2),p(3))/pi*180;
disp(sprintf('Results for u_phi: dphi = %g, amplitude = %g, phase_phi =% g',...
                                    dphi,Amp_phi,phase_phi))
disp(sprintf('Ratio of amplitudes = %g, phaseDiff = %g',Amp_phi/Amp_r,phase_r-phase_phi))
uphi_fit = M*p;
figure(102); plot(phi*180/pi,uphi,'g',phi/pi*180,uphi_fit,'b'); xlim([0,360])
            xlabel('phi [deg]'); ylabel('u_\phi'); legend('data','fit');
-->
Mode = 7
n = 3
Results for u_r: dr = -5.61863e-07, amplitude = 0.773988, phase_r = 158.09
Results for u_phi: dphi = -3.14111e-07, amplitude = 0.253133, phase_phi = -111.91
Ratio of amplitudes = 0.327049, phaseDiff = 270
```


9.39 Hertz contact of a rigid cylinder with an elastic half space

There is a very nice web page about OpenHertz at foadsf.github.io/OpenHertz/. It allows to examine different Hertz contact setups.

In this section the contact of a rigid cylinder with a half space is examined and compared to result for the Hertz contact theory.

9.39.1 The model and the algorithm

A rigid, horizontal cylinder with radius R is pushed downwards by D into an elastic half space. The goal is to determine the resulting deformation and stresses. This contact problem is not a linear problem and thus requires some additional work if analyzed with the help of FEMoctave. The domain of contact is not know a-priori and thus has to be determined by an appropriate iteration.

The algorithm is based on the observation, that the normal stress σ_{y} or the vertical displacement u_{2} are known along the upper edge of the half space at $y=0$. In the contact zone $-a \leq x \leq+a$ the displacement of the plane is given by the

| symbol | | units |
| :---: | :--- | :---: |
| R | radius of cylinder | mm |
| D | penetration depth | mm |
| x | horizontal coordinate | mm |
| y | vertical coordinate | mm |
| a | half width of the contact area | mm |
| P | total pressure per length | $\mathrm{N} / \mathrm{mm}^{2}$ |
| p | local pressure | $\mathrm{N} / \mathrm{mm}^{2}$ |
| E | Young's modulus of elasticity | $\mathrm{N} / \mathrm{mm}^{2}$ |
| ν | Poisson's ratio | |
| W | width of the computational domain | mm |
| H | height of the computational domain | mm |

Table 19: Parameters for the contact of a cylinder with a half space
equation of the displaced cylinder.

$$
\begin{aligned}
R^{2} & =x^{2}+(y-R+D)^{2} \\
y & =R-D-\sqrt{R^{2}-x^{2}} \approx R-D-R+\frac{x^{2}}{2 R}=-D+\frac{x^{2}}{2 R}
\end{aligned}
$$

As consequence use the boundary conditions

$$
\left\{\begin{array}{lll}
u_{2}(x)=R-D-\sqrt{R^{2}-x^{2}} & \text { for } & |x| \leq a \\
\sigma_{y}=0 & \text { for } & |x| \geq a \\
\sigma_{x}=0 & \text { for } & |x| \leq W
\end{array}\right.
$$

along the upper edge $y=0$. Due to the obvious symmetry only half of the physical domain has to be used for the computational model, leading to the computational domain is $0 \leq x \leq W$ and $-H \leq y \leq 0$. On the other sections of the boundary use

$$
\left\{\begin{array}{lll}
u_{1}=0 \quad, \quad \sigma_{y}=0 & \text { along } & x=0 \\
u_{1}=0 \quad, \quad \sigma_{y}=0 & \text { along } & x=W \\
u_{1}=u_{2}=0 & \text { along } & y=-H
\end{array}\right.
$$

In the domain a plane strain model is used with the material parameters E and ν.

Figure 180: The mesh for the cylinder contact problem

- To start the iteration the intersection of the cylinder with the plane $y=0$ is used.

$$
y=0=R-D-\sqrt{R^{2}-x^{2}} \quad \Longrightarrow \quad a_{0}^{2}=x^{2}=R^{2}-(R-D)^{2}=2 R D-D^{2}=D(2 R-D)
$$

The initial value of a_{0} will be updated to a by each iteration.

- A triangular mesh is generated with smaller triangles in the corner $\left[0 \leq x \leq 2 a_{0}\right] \times\left[-2 a_{0} \leq y \leq 0\right]$. By adding points close to $[a, 0]$ an even finer mesh is used in the critical area of the contact point at $x=+a$. Find the original mesh and an enlarged critical area in Figure 180.
- For each iteration solve the plain strain problem with the help of the command PlaneStrain(). Then evaluate the normal stress $\sigma_{y}(x)$ along the upper edge $y=0$ and determine the first zero at $x=a$ of $\sigma_{y}(x)$. For $x>a$ the normal stress σ_{y} is positive and thus the cylinder and the half plane will not be in contact, see Figure 180(c).
- The above computations are repeated and the changing values of a have to be observed. After 5 iterations the value of a changes only slightly and a good approximation of the domain of contact $-a \leq x \leq+a$ is determined. The displacement u_{2} along the upper edge at $y=0$ and the circle are shown in Figure 181(a).
- By integrating the normal stress σ_{y} along different heights y verify that the vertical pressure P (units N / mm) is independent on the height y.
- Compare the obtained results for the contact (half) width a and the pressure P with the theoretical results from Section 9.39 .3 below. The obviously missing factor 2 for the pressure is caused by the symmetry, i.e. only half the setup is used for the FEM computations.

Figure 181: The vertical displacement u_{2} along the upper edge and the normal stress σ_{y} at different levels

To start define the necessary auxiliary functions and generate the initial mesh.

```
HertzCylinder.m
    PHASE = 1 %% 1: setup and computation
        %% 2: visualization of the result
        %% 3: parametric study for small penetration depth D
        %% 4: parametric study for large penetration depth D
    switch PHASE
    case 1 %% PHASE 1
    clear *
    pkg load femoctave
    E = 200e3; nu = 0.24 ;%% N/mm^2 parameter for steel
    global R D
    R = 1; D = 0.01; %% radius of cylinder and indentation depth
    W = 0.75; H = 1; %% width and height of the computational domain
    a0 = sqrt (D) *sqrt (2*R-D) %% first estimate of contact point
    Area = 0.1^2; MeshType = 'quadratic'; %% definition of the mesh
```

```
Seg1.name = 'Segment';
Seg1.border = [0,-2*a0,0;2*a0,-2*a0,0;2*a0,0,0];
Point1.name = 'MeshSize'; Point1.where = [+a0,-a0]; Point1.area = Area/20;
%% finer mesh arounf origin
Point2.name = 'MeshSize'; Point2.where = [+2*a0,-2*a0]; Point2.area = Area;
dd = 0.001; %% very fine mesh at contact point
Mesh = CreateMeshTriangle('Flat', [0,0,-21;a0-dd,0,-21;a0,0,-22;a0+dd,0,-22;...
    W, 0,-12;W,-H,-11;0,-H,-12], Area,Seg1,Point1,Point2);
function res = disp_y(xy) %% displacement in y-direction as function of x
    global R D
    a0 = sqrt (D)*sqrt (2*R-D);
    res = (R-D-sqrt (R^2 - xy(:,1).^2));
    res = res.* (xy(:,1)<=a0).* (xy(:,2)>-eps);
endfunction
function res = FindFirstPositive(x,sigma_y);%% find the first zero of the normal stress
    ind = find(sigma_y>0,1);
    x0 = x(ind-1); dx = x(ind)-x0;
    y0 = sigma_y(ind-1); y1 = sigma_y(ind);
    res = x0 -y0*dx/ (y1-y0);
endfunction
figure(1); FEMtrimesh(Mesh); axis equal; xlabel('x'); ylabel('y')
    xlim(0.145+[-0.03,0.03]);ylim([-0.05,0.01])
Mesh = MeshUpgrade (Mesh,MeshType);
```

Then solve the first plane strain problem and start the iteration.

HertzCylinder.m

[u1,u2] = PlaneStrain (Mesh, E, nu, $\{0,0\},\left\{0, ' \operatorname{disp} y^{\prime}\right\},\{0,0\}$);
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(Mesh,u1,u2,E,nu);
$x _e d g e=1 i n s p a c e(0,2 \star a 0,1000)$ ';
sigma_Y_edge = FEMgriddata (Mesh, sigma_y, x_edge, $\left.0 * x _e d g e\right) ;$
figure(30); plot(x_edge,sigma_y_edge,a0,0,'+');
xlabel('x'); ylabel('\sigma_y'); xlim([0,max(x_edge)])
$\mathrm{a}=$ FindFirstPositive(x_edge,sigma_y_edge)
for jj $=1: 5 \quad \% \%$ use 5 iterations and observe the value of a
Mesh $=$ CreateMeshTriangle('Flat', $[0,0,-21 ; a-d d, 0,-21 ; a, 0,-22 ; a+d d, 0,-22 ; W, 0,-12 ; W,-H,-11 ; 0,-H,-12], \ldots$ Area, Seg1,Point1,Point2);
Mesh = MeshUpgrade (Mesh, MeshType);
[u1,u2] = PlaneStrain(Mesh, E, nu, $\{0,0\},\left\{0, ' \operatorname{disp} _y^{\prime}\right\},\{0,0\}$);
[sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress (Mesh,u1,u2,E,nu);
sigma_y_edge = FEMgriddata(Mesh,sigma_y, x_edge, $\left.0 * x _e d g e\right) ;$
a = FindFirstPositive(x_edge,sigma_y_edge)
endfor
\%\% display the normal stress as function of x along the upper edge
ind $=$ find (x_edge<a);
sigma_y_fit $=$ mean (sigma_y_edge (ind)) *4/pi*sqrt(1-x_edge (ind) .^2/a^2);
figure(31); plot(x_edge,sigma_y_edge, x_edge(ind), sigma_y_fit,a0,0,'+',a,0,'+'); xlabel('x'); ylabel('\sigma_y'); legend('FE data','theory',...
'location','southeast'); xlim([0,1.1*a0])
VonMises $=$ EvaluateVonMises(sigma_x,sigma_y,tau_xy,sigma_z);
$\% \%$ display the displacement of the upper edge

```
y_edge = FEMgriddata(Mesh,u2,x_edge,0*x_edge);
y_circle = R-D-sqrt(R^2-x_edge. ^2);
figure(20); plot(x_edge,y_edge,x_edge,y_circle,a,0,'*'); xlabel('x'); ylabel('u_2');
    legend('solid','circle', 'location','northwest'); xlim([0,max(x_edge)])
x_edge_low = linspace(0,W,1000)';
sigma_y_edge_low = FEMgriddata(Mesh,sigma_y,x_edge_low,-H*ones(size(x_edge_low)));
sigma_y_edge_top = FEMgriddata(Mesh,sigma_y,x_edge_low,zeros(size(x_edge_low)));
sigma_y_edge_half = FEMgriddata(Mesh,sigma_y,x_edge_low, -H/2*ones(size(x_edge_low)));
sigma_y_edge_10 = FEMgriddata(Mesh,sigma_y,x_edge_low,-H/10*ones(size(x_edge_low)));
sigma_y_edge_100 = FEMgriddata(Mesh,sigma_y,x_edge_low,-H/100*ones(size(x_edge_low)));
figure(90); plot(x_edge_low, sigma_y_edge_top,x_edge_low,sigma_y_edge_100,...
            x_edge_low, sigma_y_edge_10,x_edge_low,sigma_y_edge_half,...
            x_edge_low,sigma_y_edge_low);
        xlabel('x'); ylabel('\sigma_y'); xlim([0,max(x_edge)])
        legend('at y = 0','at y = -H/100','at y = -H/10','at y = -H/2','at y = -H', ...
        'location','southeast')
PressureUpperEdgeLocal = trapz(x_edge,sigma_y_edge)
PressureUpperEdge = trapz(x_edge_low,sigma_y_edge_top)
Pressure100Edge = trapz(x_edge_low,sigma_y_edge_100)
Pressure10Edge = trapz(x_edge_low,sigma_y_edge_10)
PressureHalfEdge = trapz(x_edge_low,sigma_y_edge_half)
PressureLowerEdge = trapz(x_edge_low,sigma_y_edge_low)
Estar = E/(1-nu^2);
P = - 2*PressureLowerEdge;
a = sqrt(4*P*R/(pi*Estar))
-->
PHASE = 1
a0 = 0.1411
a = 0.1115
a=0.095575
a = 0.087056
a = 0.082939
a=0.080529
a = 0.079477
PressureUpperEdgeLocal = -516.16
PressureUpperEdge = -515.46
Pressure100Edge = -512.26
Pressure10Edge = -514.30
PressureHalfEdge = -513.27
PressureLowerEdge = -514.44
a = 0.078567
```


9.39.2 Evaluation and visual results

The above results have to be visualized.

- A grid of the domain $[0,3 a] \times[-3 a, 0]$ with the sizable effects is generated, the deformation given by u_{1} and u_{2}.
- On this grid u_{1}, u_{2} and the total displacement $\sqrt{u_{1}^{2}+u_{2}^{2}}$ are evaluated and visualized, leading to Figure 182.
- The normal stresses σ_{y} and σ_{x} and the von Mises stress are evaluated on the same grid and visualized, leading to Figure 183.

```
case 2 %% PHASE 2
[x,y] = meshgrid(linspace(0,3*a,51),linspace(-3*a,0,51));
u1g = FEMgriddata(Mesh,u1,x,y); u2g = FEMgriddata(Mesh,u2,x,y);
```


Figure 182: Contact with cylinder: contours for the displacements u_{2} and u_{1} and $\sqrt{u_{1}^{2}+u_{2}^{2}}$

Figure 183: Contact with cylinder: contours for the two normal stresses and the von Mises stress

```
x_g = x + ulg; y_g = y + u2g; %%% construct the deformed grid
sigma_yg = FEMgriddata(Mesh,sigma_y,x,y); %% evaluate sigma_y on the grid
figure(101); mesh(x_g,y_g,sigma_yg); xlabel('x'); ylabel('y');zlabel('\sigma_y')
figure(111); contourf(x_g,y_g,sigma_yg/le3,linspace(min(sigma_yg(:)),0,51)/1e3);
                                    xlabel('x'); ylabel('y'); title('\sigma_y [kPa]'); colorbar
    figure(121); contourf(x_g,y_g,-u2g*1e3,51); xlabel('x'); ylabel('y');
                        title('-u_y [\mum]'); colorbar
    sigma_xg = FEMgriddata(Mesh,sigma_x,x,y);
    figure(102); mesh(x_g,y_g,sigma_xg); xlabel('x'); ylabel('y');zlabel('\sigma_x')
    figure(112); contourf(x_g,y_g,sigma_xg/le3,linspace(min(sigma_yg(:)),0,51)/1e3);
        xlabel('x'); ylabel('y'); title('\sigma_x [kPa]'); colorbar
    figure(122); contourf(x_g,y_g,ulg*1e3,51); xlabel('x'); ylabel('y');
        title('u_x [\mum]'); colorbar
    VonMises_g = FEMgriddata(Mesh,VonMises,x,y);
    figure(103); mesh(x,y,VonMises_g); xlabel('x'); ylabel('y');zlabel('von Mises')
    figure(113); contourf(x_g,y_g,VonMises_g/1e3,linspace(0,max(VonMises_g(:)),51)/1e3);
        xlabel('x'); ylabel('y'); title('von Mises [kPa]'); colorbar
    figure(123); contourf(x_g,y_g,sqrt(ulg.^2+u2g.^2)*1e3,51);
        xlabel('x'); ylabel('y'); title('displacement [\mum]'); colorbar
DOriginal = D; aOriginal = a;
```


9.39.3 The analytical solution based on the Hertz theory

The results in this section are found in [Barb18], which is based on [John87a]. The goal is to present the results of the Hertz contact for a line load by a cylinder on a half space. The notation is adapted to match the above sections.

- Use [Barb18, p. 14]. Apply a point load P at the origin to a half space $y<0$. The shearing stresses are $\tau_{x y}=\tau_{y z}=0$.

Solve $\Delta \phi=0$ for the potential ϕ and then along the surface $y=0$ find

$$
\sigma_{y}=-\frac{\partial \phi}{\partial y} \quad \text { and } \quad u_{2}=-\frac{2\left(1-\nu^{2}\right) P}{E} \frac{\partial \phi}{\partial y}=-\frac{2 P}{E^{\star}} \frac{\partial \phi}{\partial y} .
$$

With $r^{2}=x^{2}+y^{2}+z^{2}$ obtain the fundamental solution

$$
\phi(R, y)=-\frac{P}{2 \pi} \ln (r+y)=-\frac{P}{2 \pi} \ln \left(\sqrt{x^{2}+y^{2}+z^{2}}+y\right) .
$$

This leads to the displacement at the surface $y=0$

$$
u_{2}(x, 0, z)=-\frac{P}{\pi E^{\star} \sqrt{x^{2}+z^{2}}} .
$$

- For a line load p along $x=0$ for $-b<z<b$ obtain

$$
u_{2}(x, 0,0)=-\frac{p}{\pi E^{\star}} \int_{z=-b}^{+b} \frac{1}{\sqrt{x^{2}+z^{2}}} d z=\ldots=-\left.\frac{p}{\pi E^{\star}} \ln \left|z+\sqrt{z^{2}+z^{2}}\right|\right|_{z=-b} ^{+b}
$$

This expression does not converge as $b \rightarrow+\infty$. This might be the reason why I did not find an analytic formula for the displacement D as function of the applied load!

- In the area of contact $-a<x<a$ the slope of the displacement has to coincide with the slope of the circle. This fact can be used to extract information on the Hertz solution. For the circle obtain

$$
\frac{\partial}{\partial x} u_{2}(x)=\frac{d}{\partial x}\left(-D+\frac{x^{2}}{2 R}\right)=\frac{x}{R} .
$$

For a point load p evaluate the slope of the upper edge.

$$
u_{2}(x, 0, z)=-\frac{p}{\pi E^{\star}} \frac{1}{\sqrt{x^{2}+z^{2}}} \quad \Longrightarrow \quad \frac{\partial}{\partial x} u_{2}(x, 0, z)=-\frac{p}{\pi E^{\star}} \frac{x}{{\sqrt{x^{2}+z^{2}}}^{3}}
$$

For a constant load density p for $-b<z<+b$ conclude

$$
\begin{aligned}
\frac{\partial}{\partial x} u_{2}(x, 0, z) & =-\frac{p}{\pi E^{\star}} \int_{z=-b}^{+b} \frac{x}{{\sqrt{x^{2}+z^{2}}}^{3}} d z \\
& =-\left.\frac{p}{\pi E^{\star}} \frac{z}{x \sqrt{x^{2}+z^{2}}}\right|_{z=-b} ^{+b}=-\frac{p}{\pi E^{\star}} \frac{2 b}{x \sqrt{x^{2}+b^{2}}} \rightarrow-\frac{p}{\pi E^{\star}} \frac{2}{x} \quad \text { as } \quad b \rightarrow+\infty
\end{aligned}
$$

Now evaluate the slope generated by the applied pressure density $p(x)$ for $-a<x<+a$ and set it equal to the slope of the circle.

$$
\frac{x}{R}=\frac{2}{\pi E^{\star}} \int_{x=-a}^{+a} \frac{p(s)}{x-s} d s
$$

A solution of this singular integral equation is given in the Appendix \mathbf{C} of [Barb18].

$$
\begin{aligned}
P & =\int_{-a}^{+a} p(x) d x \\
p(x) & =\frac{1}{\pi \sqrt{a^{2}-x^{2}}}\left(P-\frac{E^{\star}}{2} \int_{-a}^{+a} \frac{\xi \sqrt{a^{2}-\xi^{2}}}{R(x-\xi)} d \xi\right)
\end{aligned}
$$

- At $x=+a$ (or $-a$) use $p(a)=0$ to conclude

$$
\begin{aligned}
0 & =P-\frac{E^{\star}}{2} \int_{-a}^{+a} \frac{\xi \sqrt{a^{2}-\xi^{2}}}{R(\pm a-\xi)} d \xi \\
P & =\frac{E^{\star}}{2} \int_{-a}^{+a} \frac{\xi \sqrt{a^{2}-\xi^{2}}}{R(+a-\xi)} d \xi=\frac{E^{\star}}{2} \int_{-a}^{+a} \frac{\xi \sqrt{(a-\xi)(a+\xi)}}{R(+a-\xi)} d \xi \\
& =\frac{E^{\star}}{2} \int_{-a}^{+a} \frac{\xi \sqrt{a+\xi}}{R \sqrt{a-\xi}} d \xi=\frac{E^{\star}}{2} \frac{\pi a^{2}}{2 R}=\frac{E}{4\left(1-\nu^{2}\right)} \frac{\pi a^{2}}{R}
\end{aligned}
$$

This equation can be solved for the half width a of the contact area.

$$
\begin{equation*}
a^{2}=\frac{4 P R\left(1-\nu^{2}\right)}{\pi E} \quad \text { and } \quad \frac{P}{a^{2}}=\frac{\pi E}{4 R\left(1-\nu^{2}\right)} \tag{106}
\end{equation*}
$$

These results are confirmed by the above FEM values.
The above analytical computaion also leads to

$$
p(x)=\frac{E^{\star}}{2 R} \sqrt{a^{2}-x^{2}}=\frac{E}{2 R\left(1-\nu^{2}\right)} \sqrt{a^{2}-x^{2}}=\frac{2 P}{\pi a^{2}} \sqrt{a^{2}-x^{2}}=\frac{2 P}{\pi a} \sqrt{1-\frac{x^{2}}{a^{2}}} .
$$

Figure 181(b) illustrates this result with the help of the FEM simulation. Use the formula for $p(x)$ to conclude

$$
\begin{aligned}
p_{\max } & =p(0)=\frac{E a}{2 R\left(1-\nu^{2}\right)}=\frac{2 P}{\pi a} \\
p_{\text {mean }} & =\frac{P}{2 a}=\frac{\pi E a}{8 R\left(1-\nu^{2}\right)}=\frac{\pi}{4} p_{\max }
\end{aligned}
$$

9.39.4 Parameter studies for different penetration depths

Starting with the above numerical results the penetration depth D can be diminished step by step and the new contact width a and pressure P be evaluated with a loop over different values of D. Instead of a fixed number of iterations a simple termination criterion is used, stop if a does not change too much any more. Find the results in Figure 184. Surprisingly the penetration depth is not too far from a linear function of the applied pressure.

Based on equation (106) expected that $P=c a^{2}$ for a constant $c=\frac{\pi E}{4 R\left(1-\nu^{2}\right)}$. This is confirmed with the help of a linear regression, leading to Figure 184(c).

Figure 184: Contact with cylinder: results of pressure and contact width for small penetration depth

```
HertzCylinder.m
case 3%% Phase 3: parametric study for small D
a = aOriginal;
D_List = DOriginal*[1:-0.1:0.1]';
a_List = zeros(size(D_List)); Pressure_List = a_List;
a_List(1) = aOriginal; Pressure_List(1) = -2*PressureLowerEdge;
for ii = 1:length(D_List)
    D = D_List(ii);
    disp(sprintf('working with penetration depth D = %g',D))
        jj = 0;
        do
            jj++;
            Mesh = CreateMeshTriangle('Flat',
                [0,0,-21;a-dd, 0,-21;a,0,-22;a+dd, 0,-22;W, 0,-12;W,-H,-11;0,-H,-12], .. 
                Area,Seg1,Point1,Point2);
```

```
    Mesh = MeshUpgrade(Mesh,MeshType);
    [u1,u2] = PlaneStrain(Mesh,E,nu, {0,0},{0,'disp_y'},{0,0});
    [sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(Mesh,u1,u2,E,nu);
    sigma_Y_edge = FEMgriddata(Mesh,sigma_y,x_edge,0*x_edge);
    a_old = a;
    a = FindFirstPositive(x_edge,sigma_y_edge);
    disp(sprintf('value a = %g, last change = %g', a , a-a_old))
    until or(abs(a-a_old)< 5e-5,jj>20)
    a_List(ii) = a;
    sigma_y_edge_low = FEMgriddata(Mesh,sigma_y,x_edge_low,-H*ones(size(x_edge_low)));
    PressureLowerEdge = trapz(x_edge_low,sigma_y_edge_low);
    Pressure_List(ii) = -2 * PressureLowerEdge;
endfor
D_List = [D_List;0]; Pressure_List = [Pressure_List;0]; a_List = [a_List;0];
figure(201); plot(Pressure_List,D_List); xlabel('pressure'); ylabel('penetration depth')
figure(202); plot(Pressure_List,a_List); xlabel('pressure'); ylabel('contact width')
p = LinearRegression(a_List.^2,Pressure_List);
figure(203); plot(a_List,Pressure_List,'*',a_List,p*a_List.^2)
    ylabel('pressure'); xlabel('contact width')
    legend('FEM','c*a^2','location','northwest')
```

Instead of using smaller penetration depth, larger ones can be examined too. The tools do not change. The results in Figure 185 show no surprises.

Figure 185: Contact with cylinder: results of pressure and contact width for large penetration depth

```
HertzCylinder.m
case 4 %% Phase 4: parametric study for large D
a = aOriginal;
D_List = DOriginal*[1:0.4:10]';
a_List = zeros(size(D_List)); Pressure_List = a_List;
for ii = 1:length(D_List)
    D = D_List(ii);
    disp(sprintf('working with penetration depth D = %g',D))
    x_edge = linspace(0,1.3*a,1000');
    jj = 0;
    do
    jj++;
    Mesh = CreateMeshTriangle('Flat',
                                    [0,0,-21;a-dd, 0,-21;a,0,-22;a+dd, 0,-22;W,0,-12;W,-H,-11;0,-H,-12],...
                        Area,Seg1,Point1,Point2);
        Mesh = MeshUpgrade (Mesh,MeshType);
```

```
    [u1,u2] = PlaneStrain(Mesh, E,nu, {0,0},{0,'disp_y'},{0,0});
    [sigma_x,sigma_y,tau_xy,sigma_z] = EvaluateStress(Mesh,u1,u2,E,nu);
    sigma_y_edge = FEMgriddata(Mesh,sigma_y,x_edge,0*x_edge);
    a_old = a;
    a = FindFirstPositive(x_edge,sigma_y_edge);
    disp(sprintf('iteration %i, value a = %g, last change = %g', jj, a, a-a_old))
until or(abs(a-a_old)< 5e-5,jj>20)
a_List(ii) = a;
sigma_y_edge_low = FEMgriddata(Mesh,sigma_y,x_edge_low,-H*ones(size(x_edge_low)));
PressureLowerEdge = trapz(x_edge_low,sigma_y_edge_low);
Pressure_List(ii) = -2 * PressureLowerEdge;
endfor
D_List = [0;D_List]; Pressure_List = [0;Pressure_List]; a_List = [0;a_List];
figure(301); plot(Pressure_List,D_List); xlabel('pressure'); ylabel('penetration depth')
figure(302); plot(Pressure_List,a_List); xlabel('pressure'); ylabel('contact width')
p = LinearRegression(a_List.^2,Pressure_List);
figure(303); plot(a_List,Pressure_List,'*',a_List,p*a_List.^2)
    ylabel('pressure'); xlabel('contact width')
    legend('FEM','c*a^2','location','northwest')
```


9.40 Hertz contact of a rigid sphere with an elastic half space

The above situation of a cylinder pressing into a half space can be modified to a sphere pressing into a half space. The algorithm does not change substantially. Find the adaptation in Table 20. The Hertz based formulas change when pressing

| cylinder | \longleftrightarrow | sphere |
| :---: | :---: | :---: |
| x, y | \longleftrightarrow | r, z |
| PlaneStress () | \longleftrightarrow | AxiStress () |
| EvaluateStress () | \longleftrightarrow | EvaluateStressAxi() |
| EvaluateVonMises () | \longleftrightarrow | EvaluateVonMisesAxi() |

Table 20: Adaptations for pressing with a cylinder or a sphere
with a sphere with radius a. Find in [John87a, p. 93]

$$
\begin{aligned}
a & =\left(\frac{3 P R}{4 E^{\star}}\right)^{1 / 3} \text { and } P=\frac{4 E^{\star}}{3 R} a^{3} \\
D & =\left(\frac{3 P}{4 E^{\star}}\right)^{2 / 3} \frac{1}{R^{1 / 3}}=\left(\frac{3 P R}{4 E^{\star}}\right)^{2 / 3} \frac{1}{R}=\frac{a^{2}}{R}=\left(\frac{3}{4 E^{\star}}\right)^{2 / 3} \frac{1}{R^{1 / 3}} P^{2 / 3} \\
P & =\frac{4 E^{\star}}{3} R^{1 / 2} D^{3 / 2} \\
p(r) & =p_{\max } \sqrt{1-\frac{r^{2}}{a^{2}}} \text { for } 0 \leq r \leq a \quad, \quad p_{\max }=\frac{3}{2} p_{\text {mean }}=\frac{3 P}{2 \pi a^{2}}
\end{aligned}
$$

The above code HertzCylinder.m is adapted to HertzSphere.m, not shown in these notes, but included in the distribution of FEMoctave.

- In Figure 186 the relations between the penetration depth, the resulting pressure and the radius of the contact are are shown, together with the theoretical results based on the Hertz theory. In addition a linear regression was used to determine that $0.8469 \cdot D_{\text {Hertz }}$ is the best match to the overall FEM data. Observe that for small penetration depth D the Hertz result

$$
P=\frac{4 E^{\star} \sqrt{R}}{3} D_{H e r t z}^{3 / 2} \quad \text { or } \quad D_{H e r t z}=\left(\frac{3 P}{4 E^{\star}}\right)^{2 / 3} \frac{1}{R^{1 / 3}}
$$

is close to the result generated by FEMoctave, but for large values of D there is a systematic difference. For the same penetration depth the required pressure by the Hertz approach is smaller than for the FEM simulation. Thus for the same pressure Hertz will arrive at a larger penetration depth. For large values of D the fitted curve is a better match.

- Figure 186(c) confirms that the total pressure P is proportional to a^{3}, the radius of the area of contact.
- In Figure 187 find the displacement in radial and z direction. In Figure 188 the normal stresses and the von Mises stress are shown.

Figure 186: Contact with sphere: results of pressure and contact width for large penetration depth

Figure 187: Contact with sphere: contours for the displacements u_{z} and u_{r} and $\sqrt{u_{r}^{2}+u_{z}^{2}}$

For a given penetration depth D we can use the Hertz results in [John87a] and determine the surface pressure

$$
\sigma_{z}(r, 0)=\left\{\begin{array}{lc}
-\frac{2 E^{\star}}{\pi a^{2}} R^{1 / 3} D^{3 / 2} \sqrt{1-\frac{r^{2}}{a^{2}}} & \text { for } r \leq a \\
0 & \text { for } r \geq a
\end{array}\right.
$$

and then use FEMoctave to determine the resulting deformations and stresses caused by the sphere indenting the half space. The other boundary conditions used by FEMoct ave are

$$
\left\{\begin{array}{llll}
\sigma_{r}=0 & & \begin{array}{l}
\text { along } \\
u_{r}=0
\end{array} & , \\
\quad \sigma_{y}=0 & \text { along } & r=W \\
u_{r}=0 & , & u_{z}=0 & \text { along } \\
u_{r}=0 & , & \sigma_{y}=0 & \text { along }
\end{array} \quad r=0\right.
$$

The code HertzSphereDirect.m shown below generates Figure 189.

Figure 188: Contact with sphere: contours for the two normal stresses and the von Mises stress

- Figure 189(a) shows the resulting displacement and the expected circular displacement by Hertz's theory. The two coincide quite well, as expected. Hertz predicts a slightly larger penetration depth, which is consistent with the observations in Figure 186.
- Figure 189(b) shows the normal stress σ_{z} in vertical direction. The result coincides with Figure 188.
- In Figure 190 find the von Mises stress for this setup. Maximal value at $r=0, z \approx-0.046$ for a radius $a=0.1$ of the area of contact. This is consistent with the information in [Gold01, p.80], where the maximal stress is predicted at $z \approx-0.48 \cdot a$.

(a) the displacement $u_{z}(r, 0)$

(b) the normal pressure σ_{z}

Figure 189: Contact with a sphere for given normal pressure $\sigma_{z}(r, 0)$

HertzSphereDirect.m

```
%% 1 GPa = 10^9 N/m^2 = 10^3 MPa = 10^3 N/mm^2
E = 200e3; nu = 0.24; %% N/mm^2
%% parameters for steel: E = 200 GPa = 200e3 MPa, nu = 0.24, yield strength = 300 MPa
%% parameters for gold: E = 79 GPa = 79e3 MPa, nu = 0.42, yield strength = 200 MPa
R = 1; D = 0.01; %% radius of sphere and indentation depth
W = 0.75; H = 1; %% width and height of the computational domain
global a P
Estar = E/(1-nu^2);
P = 4*Estar/3*sqrt (R)*D^ (3/2)
a = (3*P*R/ (4*Estar) )^ (1/3)
D = (3*P/ (4*Estar) )^ (2/3)/R^ (1/3);
```


Figure 190: The von Mises stress for a contact with a sphere for given normal pressure $\sigma_{z}(r, 0)$

```
function res = Load(rz)
    global a P
    r = rz(:,1);
    res = -3*P/ (2*pi*a^2)*sqrt(1-r.^2/a^2).*(r<a);
endfunction
N = 51;
if 0 %% mesh by rectangle
    Mesh = CreateMeshRect(linspace(0,W,N),linspace(-H,0,N),-11,-23,-12,-12);
else %% mesh by triangle
    area = 0.5*W*H/N^2;
    dd = 0.001;
    Mesh = CreateMeshTriangle('Flat', [0,0,-23;a-dd,0,-23;a,0,-22;a+dd, 0,-22; ...
                                    W, 0,-12;W,-H,-11;0,-H,-12],area);
endif
Mesh = MeshUpgrade(Mesh,'quadratic');
%%Mesh = MeshUpgrade(Mesh,'cubic');
[ur,uz] = AxiStress(Mesh, E,nu, {0,0},{0,0},{0,'Load'});
figure(1); FEMtrimesh(Mesh,ur); xlabel('r'); ylabel('z'); zlabel('u_r')
figure(2); FEMtrimesh(Mesh,uz); xlabel('r'); ylabel('z'); zlabel('u_z')
r = linspace(0,2*a,1000)';
uz_edge = FEMgriddata(Mesh,uz,r,zeros(size(r)));
circle = R-D-sqrt(R^2-r.^2);
figure(11); plot(r,uz_edge,'r',r,circle,'k', [a,a], [-D,0],'g')
    xlabel('r'); ylabel('u_z'); xlim([0,2*a]);
    legend('u_z','circle','r=a','location','northwest')
DifferenceUzAtOrigin = circle(1)-uz_edge(1)
[sigma_r,sigma_y,sigma_z,tau_xz] = EvaluateStressAxi(Mesh,ur,uz,E,nu);
VonMises = EvaluateVonMisesAxi(sigma_r,sigma_y,sigma_z,tau_xz);
NN = 51;
[rr,zz] = meshgrid(linspace(0, 3*a,NN),linspace(-3*a,0,NN));
sigma_zg = FEMgriddata(Mesh,sigma_z, rr,zz);
```

```
sigma_rg = FEMgriddata(Mesh,sigma_r, rr,zz);
VonMises_g = FEMgriddata(Mesh,VonMises,rr,zz);
figure(31); contourf(rr,zz,sigma_rg/le3,51); xlabel('r'); ylabel('z');
    title('\sigma_r [kPa]'); axis equal; colorbar
figure(32); contourf(rr,zz,sigma_zg/le3,51); xlabel('r'); ylabel('z');
    title('\sigma_z [kPa]'); axis equal; colorbar
figure(33); contourf(rr,zz,VonMises_g/1e3,51); xlabel('r'); ylabel('z');
    title('von Mises [kPa]'); axis equal; colorbar
```


9.41 Elastic waves in solids

In this section three initial boundary value problems for dynamic elasticity are examined. The effect of a localized initial displacement is visualized. Elastic waves are generated by each of the examples.

9.41.1 A cylindrical elastic wave

On a square domain $(x, y) \in[-5,+5] \times[-5,+5]$ an initial horizontal displacement is prescribed by

$$
u_{1}(x, y)= \begin{cases}0.1 \cdot \cos ^{2}(4 r) & \text { for } \quad 0 \leq r \leq \frac{\pi}{8} \approx 0.4 \\ 0 & \text { for } \frac{\pi}{8} \leq r\end{cases}
$$

where $r=\sqrt{x^{2}+y^{2}}$. The vertical displacements u_{2} and the initial velocities are set to zero. On all of the boundaries zeros displacements are enforced. Then the solutions are generated at times $t=1.0,2.0,3.0$ and 4.0. The code below leads to Figures 191 and 192.

- The maximal speed of the elastic waves is $c=\sqrt{\frac{E}{\rho}}=1$ and for $r=\sqrt{x^{2}+y^{2}}>\frac{\pi}{8} \approx 0.4$ the initial displacements are zero. Thus the displacements for $r>c t+0.4$ vanish. Expect the highest amplitudes at $r=c t$.
- In the right columns in Figures 191 and 192 the scale if changing for the different times. Thus use the values indicated on the axes to evaluate the speed of the waves. The scaling in the left columns remains constant.
- The initial displacement is strictly horizontal and longitudinal waves move faster than transversal waves. This leads to the elliptical shape of the horizontal displacement u_{1} for small times, i.e. Figure 191(b). The transversal speed $c_{\text {trans }}=\frac{c}{\sqrt{2}} \approx 0.7 c$ is confirmed by the figure.
- Initially the vertical displacements u_{2} are considerably smaller than the horizontal displacements u_{1}.

ElasticWaveCylinder.m

```
    E = 1; nu = 0; rho = 1; f = {0,0}; gD = {0,0}; gN = {0,0}; L = 10; H= L;
    function res = u0Func(xy)
    r = sqrt(xy(:,1).^2+xy(:,2) .^2);
    res = 0.1*\operatorname{cos}(4*r).^2.* (4*r<pi/2);
    endfunction
    u0 = {'u0Func',0}; v0 = {0,0}; t0 = 0; tend = 4; steps = [4,100];
    N = 100; %% the graphs in the notes are generated with N = 200, but the CPU time ...
    Mesh = CreateMeshRect(linspace(-L/2,+L/2,N+1),linspace(-H/2,+H/2,N+1),-11,-11,-11,-11);
    Mesh = MeshUpgrade(Mesh,'quadratic');
    [u1_all,u2_all,t] = PlaneStressDynamic(Mesh,E,nu,rho,f,gD,gN,u0,v0,t0,tend,steps);
    Amp = 0.02; Levels = Amp*[-1:0.1:1]; Levels(11)=[]; %% drop Levels = 0
    for jj = 2:length(t)
    u1 = u1_all(:,jj); u2 = u2_all(:,jj);
    figure(20+jj); FEMtrimesh(Mesh,u1); zlim(Amp*[-1,1])
        xlabel('x'); ylabel('y'); zlabel('u_1');
    figure(30+jj); FEMtrimesh(Mesh,u2); zlim(Amp*[-1,1])
                xlabel('x'); ylabel('y'); zlabel('u_2');
    figure(40+jj); clf; FEMtricontour(Mesh,ul,Levels); axis equal;
                xlabel('x'); ylabel('y'); title('u_1');
    figure(50+jj); clf; FEMtricontour(Mesh,u2,Levels); axis equal
                xlabel('x'); ylabel('y'); title('u_2')
endfor
```


(a) graph of u_{1} at $t=1.0$

(c) graph of u_{1} at $t=2.0$

(e) graph of u_{1} at $t=3.0$

(g) graph of u_{1} at $t=4.0$
(b) contours of u_{1} at $t=1.0$

(d) contours of u_{1} at $t=2.0$

(f) contours of u_{1} at $t=3.0$

(h) contours of u_{1} at $t=4.0$

Figure 191: The horizontal displacement u_{1} of an elastic cylindrical wave

(a) graph of u_{2} at $t=1.0$

(c) graph of u_{2} at $t=2.0$

(e) graph of u_{2} at $t=3.0$

(g) graph of u_{2} at $t=4.0$

(b) contours of u_{2} at $t=1.0$
U_{2}

(d) contours of u_{2} at $t=2.0$

(f) contours of u_{2} at $t=3.0$

(h) contours of u_{2} at $t=4.0$

Figure 192: The vertical displacement u_{2} of an elastic cylindrical wave

9.41.2 A planar elastic wave in a canal

On a domain snown on the right in Figure 193 an initial horizontal displacement is prescribed by

$$
u_{1}(x, y)= \begin{cases}0.1 \cdot \cos ^{2}(8(x+1)) & \text { for } 0 \leq(x+1) \leq \frac{\pi}{16} \approx 0.2 \\ 0 & \text { for } \frac{\pi}{16} \leq(x+1)\end{cases}
$$

The vertical displacements u_{2} and the initial velocities are set to zero. On all of the boundaries are force free. Only on the edge on the right zeros displacements are enforced. Then the solutions are generated at times $t=1.0,2.0,3.0$ and 4.0. The code below leads to Figures 193 and 194.

- With the parameters $E=1, \nu=0$ and $\rho=1$ the solution is a single pulse moving form $x \approx-1$ to the right with the speed $c=1$ for the longitudinal elastic wave. This would be the case if the canal had a constant width. This observation is confirmed by Figure 193(b) at time $t=1$. Up to this time the width of the canal was constant. Only at to upper edge the first, minor effect of the changing width is visible.
- At time $t=2$ in Figure 193(d) the longitudinal pulse is at $x \approx 1$ with its shape and size mostly intact. The upper part is clearly modified by the narrower canal. In the section $x<1$ the transversal elastic wave generated by the upper wall is clearly visible.
- At time $t=3$ in Figure 193(f) the longitudinal pulse is at $x \approx 2$ with its shape and size mostly intact. The transvesal wave moved down with speed $c_{\text {trans }}=\frac{c}{\sqrt{2}} \approx 0.7$.
- At time $t=4$ in Figure 193(h) the longitudinal pulse is at $x \approx 2$. It was reflected at the hard wall at $x=2.5$ and is moving back with negative amplitude.
- In Figure 194 the vertical displacement u_{2} is shown. At time $t=1$ no result is shown, since $u_{2} \approx 0$.

```
x = linspace (0,1,21)'; y = cos(pi/2*x).^2; bc = - 22*ones(size(x));
MeshData = [-1,0.5,-22;x,0.5*y,bc;2.5,0,-11;2.5,-1,-22;-1,-1,-22];
x = MeshData(:,1); y = MeshData(:,2);
Mesh = CreateMeshTriangle('Canal',MeshData,0.001);
Mesh = MeshUpgrade(Mesh, 'quadratic');
    E = 1; nu = 0; rho = 1; f = {0,0}; gD = {0,0}; gN = {0,0};
    function res = u0Func(xy)
        res = 0.1*\operatorname{cos}(8*(xy(:,1)+1)).^2.* (8* (xy(:,1)+1)<pi/2);
    endfunction
    u0 = {'u0Func',0}; v0 = {0,0}; t0 = 0; tend = 4; steps = [4,200];
    [u1_all,u2_all,t] = PlaneStressDynamic(Mesh, E, nu,rho,f,gD,gN,u0,v0,t0,tend,steps);
    Amp = 0.065; Levels = Amp*[-1:0.1/2:1]; Levels(21)=[]; %% drop Levels = 0
    for jj = 2:length(t)
    u1 = ul_all(:,jj); u2 = u2_all(:,jj);
    figure(20+jj); FEMtrimesh(Mesh,u1); zlim(Amp*[-1,1])
                                    xlabel('x'); ylabel('y'); zlabel('u_1');
    figure(30+jj); FEMtrimesh(Mesh,u2); zlim(Amp*[-1,1])
                            xlabel('x'); ylabel('y'); zlabel('u_2');
    figure(40+jj); clf; FEMtricontour(Mesh,ul,Levels); axis equal; title('u_1')
                            hold on; plot([x;x(1)],[y;y(1)],'k'); xlabel('x'); ylabel('y')
        figure(50+jj); clf; FEMtricontour(Mesh,u2,Levels); axis equal; title('u_2')
                        hold on; plot([x;x(1)],[y;y(1)],'k'); xlabel('x'); ylabel('y')
    endfor
```


Figure 193: The horizontal displacement u_{1} of an elastic cylindrical wave

Figure 194: The vertical displacement u_{2} of an elastic cylindrical wave

9.41.3 A planar wave moving around a turn

On the curved domain shown in Figure 195 force free boundary contions are used on all section, but the top right part. There zero displacements are imposed. An elastic wave is started horizontally in the lower left section by using the initial displacement

$$
u_{1}(x, y)= \begin{cases}0.1 \cdot \cos ^{2}(4 x) & \text { for } 0 \leq x \leq \frac{\pi}{8} \approx 0.4 \\ 0 & \text { for } \frac{\pi}{8} \leq x\end{cases}
$$

$u_{2}(x, y)=0$ and zero initial velocity. Due to the rather theoretical material parameters $E=1, \nu=0$ and $\rho=1$ the wave speed for longitudinal elastic waves is given by $c=\sqrt{\frac{E}{\rho}}=1$. The single pulse of the initial form $\frac{0.1}{2} \cos ^{2}(4 x)$ is expected to move around the corner, leading to nonzero vertical displacements u_{2}. The code below leads to Figure 196, confirming the results. Caused by refelctions at the boundary of the curved domain the initial pulse will form a sizable tail.

- Observe that the values of u_{1} decrease as time t advances and the values of u_{2} increase.
- To examine different wave speeds, change the modulus of elasticity E, since the speed is given by $c=\sqrt{\frac{E}{\rho}}$.
- To examine the considerably smoother results on a horizontal strip, uncomment the line with the command MeshDeform () in the code below. Observe the pure pulse moving to the right, no tail is forming and u_{2} remains zero.
- To examine transversal waves change the initial displacement to $u_{2}(x, y)$ with the modified line

```
    u0 = {0,'u0Func'}; v0 = {0,0};
```

\llcorner

For transversal waves the speed is given by $c_{\text {trans }}=\sqrt{\frac{G}{\rho}}$ with the shearing modulus $G=\frac{E}{2(1+\nu)}$. Thus for $\nu=0$ find $c_{\text {trans }}=\frac{1}{\sqrt{7}} c \approx 0.7 c$. The results in Figure 196 will change. Now u_{2} will be large to start out.

Figure 195: The domain for an elastic wave moving on a curve

```
%%% speed sqrt(E/rho) for longitudinal waves
E = 1; nu = 0; rho = 1; L = 12; H = 1; f = {0,0}; gD = {0,0}; gN = {0,0};
function res = u0Func(xy)
    res = 0.1*\operatorname{cos}(4*xy(:,1)).^2.* (4*xy(:,1)<pi/2);
endfunction
u0 = {'u0Func',0}; v0 = {0,0}; t0 = 0; tend = 10; steps = [5,200];
Mesh = CreateMeshRect(linspace(0,L,121),linspace(-H/2,+H/2,11),-22,-22,-22,-11);
function res = Deform(xy)
    alpha = pi/8; R = 5/alpha;
```

```
    x = xy(:,1); y = xy(:,2) + R; angles = x/R; r = y;
    res = [r.*sin(angles),R-r.*cos(angles)];
endfunction
Mesh = MeshDeform(Mesh,'Deform');
Mesh = MeshUpgrade(Mesh,'quadratic');
[u1_all,u2_all,t] = PlaneStressDynamic(Mesh,E,nu,rho,f,gD,gN,u0,v0,t0,tend, steps);
Amp = 0.07;
for jj = 2:length(t)
    u1 = u1_all(:,jj); u2 = u2_all(:,jj);
    disp(sprintf('at time t=%i, max(u1) = %g, max(u2) = %g, max(u) = %g',...
                            t(jj),max(u1),max(u2),max(sqrt(u1.^2+u2.^2))))
    figure(20+jj); FEMtrimesh(Mesh,u1); zlim(Amp*[-0.1,1])
                xlabel('x'); ylabel('y'); zlabel('u_1');
    figure(30+jj); FEMtrimesh(Mesh,u2); zlim(Amp*[-0.1,1])
                                    xlabel('x'); ylabel('y'); zlabel('u_2');
    figure(40+jj); FEMtrimesh(Mesh,sqrt(u1.^2+u2.^2)); zlim(Amp*[-0.1,1])
                            xlabel('x'); ylabel('y'); zlabel('|u|');
endfor
-->
at time t=2, max(u1) = 0.0610161, max(u2) = 0.00706702, max(u) = 0.0612235
at time t=4, max(u1) = 0.0633773, max(u2) = 0.0178088, max(u) = 0.0653784
at time t=6, max(u1) = 0.0561453, max(u2) = 0.0253832, max(u) = 0.0613949
at time t=8, max(u1) = 0.0469787, max(u2) = 0.0311124, max(u) = 0.0563221
at time t=10, max(u1) = 0.0409416, max(u2) = 0.0369974, max(u) = 0.0551817
```


(e) $t=4.0$

(h) $t=6.0$

(k) $t=8.0$

(n) $t=10.0$

Figure 196: An elastic wave moving in a turn at times $2,4,6,8$ and 10. The left column shows the horizontal displacement u_{1}, the middle column the vertical displacement u_{2} and the column on the right $u=\sqrt{u_{1}^{2}}+u_{2}^{2}$.

Bibliography

[AtkiHan09] K. Atkinson and W. Han. Theoretical Numerical Analysis. Number 39 in Texts in Applied Mathematics. Springer, 2009.
[AxelBark84] O. Axelsson and V. A. Barker. Finite Element Solution of Boundary Values Problems. Academic Press, 1984.
[Barb18] J. Barber. Contact Mechanics. Springer, 2018.
[Blev79] R. Blevins. Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, 1979.
[Butc03] J. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley \& Sons, Ltd, second edition, 2003.
[Demm97] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.
[Gold01] W. Goldsmith. Impact. Dover Civil and Mechanical Engineering. Dover Publications, 2001.
[GoluVanLoan96] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, third edition, 1996.
[IzadSuayNoei21] M. Izadi, S. Yüzbasi, and S. Noeiaghdam. Approximating Solutions of Non-Linear Troesch's Problem via an Efficient Quasi-Linearization Bessel Approach. Mathematics, 9(16), 2021.
[John87a] K. Johnson. Contact Mechanics. Cambridge University Press, 1987.
[Kell92] H. B. Keller. Numerical Methods for Two-Point Boundary Value Problems. Dover, 1992.
[KubiHlav08] M. Kubicek and V. Hlavacek. Numerical Solution of Nonlinear Boundary Value Problems with Applications. Dover books on engineering. Dover, 2008.
[MuelSilt12] J. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with Practical Applications. Computational Science and Engineering. Society for Industrial and Applied Mathematics, 2012.
[MuelSilt20] J. Mueller and S. Siltanen. The D-bar method for electrical impedance tomography-demystified. Inverse Problems, 36:28, 2020.
[Prze68] J. Przemieniecki. Theory of Matrix Structural Analysis. McGraw-Hill, 1968. Republished by Dover in 1985.
[Sege77] L. A. Segel. Mathematics Applied to Continuum Mechanics. MacMillan Publishing Company, New York, 1977. republished by Dover 1987.
[Seyd00] R. Seydel. Einführung in die numerische Berechnung von Finanz-Derivaten. Springer, 2000.
[Seyd11] R. Seydel. Tools for Computational Finance. Springer, 5th edition, 2011.
[www:triangle] J. R. Shewchuk. https://www.cs.cmu.edu/~quake/triangle.html.
[Soed04] W. Soedel. Vibrations of Shells and Plates. Dekker Mechanical Engineering. Taylor \& Francis, 3rd edition, 2004.
[Sout73] R. W. Soutas-Little. Elasticity. Prentice-Hall, 1973.
[VarFEM] A. Stahel. Calculus of Variations and Finite Elements. Lecture Notes used at HTA Biel, 2000.
[Stah08] A. Stahel. Numerical Methods. lecture notes, BFH-TI, 2008.
[Stah22] A. Stahel. Octave and MATLAB for Engineering Applications. Springer Fachmedien Wiesbaden, Wiesbaden, first edition, 2022.
[Stew13] I. Stewart. Seventeen Equations that Changed the World. Profile Books Limited, 2013.
[TongRoss08] P. Tong and J. Rossettos. Finite Element Method, Basic Technique and Implementation. MIT, 1977. Republished by Dover in 2008.
[WaitMitc85] R. Wait and A. Mitchell. Finite Element Analysis and Applications. A Wiley-Interscience publication. Wiley, 1985.
[Wein74] R. Weinstock. Calculus of Variations. McGraw-Hill, New York, 1962. republished by Dover.
[Zien13] O. Zienkiewicz, R. Taylor, and J. Zhu. The Finite Element Method: Its Basis and Fundamentals. ButterworthHeinemann, 7 edition, 2013.

List of Figures

1 A semi-disk as domain in \mathbb{R}^{2} and a solution of a BVP 9
2 Deformation of an elastic solid 13
3 Definition of strain: a rectangle before and after deformation 13
4 Components of stress in space 14
5 Solution of $-\Delta u=0.25$ on a rectangle 21
6 Solution of the Laplace equation in cylindrical coordinates 22
7 Solution of a diffusion problem on a L-shaped domain 23
8 Solution of a diffusion convection problem 24
9 The fourth eigenfunction of $\Delta u=\lambda u$ on a disc 25
10 The first four radial eigenmodes of the Laplace operator on a disk of radius 1 27
11 Solution of a dynamic heat equation 29
12 Solution of a wave equation 30
13 The solution for a simple 1D boundary value problem and the sparsity of the matrix \mathbf{A} 31
14 The solution of a steady state heat problem and the heat flux across spheres of radius r 32
15 The solution of dynamic heating of a ball, u as function of r or t 33
16 The solution of dynamic heating of a ball, surface and contours 33
17 The amplitude of a vibrating string, u as function of x and t, the surface 34
18 The amplitude of a vibrating string, u as function of x and t, the contour lines 35
19 The solutions and its contours for a nonlinear dynamic heat problem 37
20 The computational domain and the two displacement functions u_{1} and u_{2} 38
21 The normal strains $\varepsilon_{x x}, \varepsilon_{y y}$ and the shearing strain $\varepsilon_{x y}$ 39
22 The normal stresses σ_{x} and σ_{y} and the shearing stress $\tau_{x y}$ 39
23 The von Mises and Tresca stress 40
24 The computational domain and the two displacement functions u_{1} and u_{2} 41
25 The normal strains $\varepsilon_{x x}, \varepsilon_{y y}$ and the shearing strain $\varepsilon_{x y}$ 41
26 The normal stresses σ_{x} and σ_{y} and the shearing stress $\tau_{x y}$ 42
27 The von Mises and Tresca stress 43
28 The first eigenmode of a bending beam 44
29 The first eigenmode of a bending beam as dynamic problem 44
30 The original and deformed domain and the von Mises stress for an axially symmetric setup 45
31 Stresses for an axially symmetric setup 46
32 A domain with a hole and a finer mesh at the lower edge 53
33 The deformed lever and the bending of the center line 53
34 A domain with a two different mesh sizes 54
35 The same mesh with linear or quadratic elements 56
36 A mesh generated by a Delaunay triangulation and the solution of a BVP 58
37 A function evaluated on a uniform grid 62
38 Convergence results for linear, quadratic and cubic elements 94
39 An linear, equilateral triangle, the Gauss integration points and the element stiffness matrix 96
40 Uniform meshes consisting of equilateral triangles 96
41 An equilateral, quadratic triangle, the Gauss integration points and the element stiffness matrix 97
42 A right triangle, the Gauss integration points and the element stiffness matrix 98
43 Uniform meshes consisting of rectangular triangles 99
44 A right angle triangle, the Gauss integration points and the element stiffness matrix 100
45 The number of nonzero entries in each row 102
46 The mesh and the solution for a BVP 103
47 Difference to the exact solution and values of $\frac{\partial u}{\partial y}$, using a first order mesh 103
48 Difference to the exact solution and values of $\frac{\partial u}{\partial y}$, using a second order mesh 104
49 Difference of the approximate values of $\frac{\partial u}{\partial y}$ to the exact values 104
50 Difference of the approximate values of u and $\frac{\partial u}{\partial y}$ to the exact values for cubic elements 105
51 Meshes for linear, quadratic and cubic elements 107
52 The solution and the first derivative, evaluated at the nodes and by interpolation 109
53 The first derivative, complete graph and zoomed in at $x=0.5$ 109
54 Differences of the FEM solution $u_{F E M}(x)$ to the exact solution $u_{\text {exact }}(x)=\exp (x)$ 110
55 The solution and difference to the exact solution for a 1D BVP 111
56 The derivative of the numerical solution and difference to the exact solution 112
57 The second derivative of the numerical solution and difference to the exact solution 112
58 The solution generated by the implicit time stepper 113
59 The solution generated by the Crank-Nicolson time stepper 114
60 The solution at time $t=2$ generated by the explicit and Runge-Kutta time steppers 114
61 Solutions of the wave equation at the time $t=t_{\text {end }}$ 116
62 Original and deformed domain and the Gauss integration points for linear elements 117
63 The strains $\varepsilon_{x x}$ and $\varepsilon_{x y}$ with two layers in each direction 118
64 The original shape of the a beam and its (exaggerated) deformed shape, using two layers of elements 122
65 Meshes for linear and quadratic elements with one layer, with the integration points 123
66 The elastic energy density of the bending beam with one or five layers 123
67 The second eigenmode of a bending beam 126
68 The solution of the boundary value problem with an additional constraint 128
69 The contours for the displacement $u=\sqrt{u_{1}^{2}+u_{2}^{2}}$, without and with constraints 129
70 Classical and weak solutions, minimizers and FEM 133
71 A few triangular elements 135
72 Transformation of the standard triangle Ω to a general triangle E 135
73 Gauss integration of order 2 on the standard triangle, using 3 integration points 137
74 Gauss integration of order 5 on the standard triangle, using 7 integration points 138
75 Local and global numbering of nodes 139
76 Basis functions for second order triangular elements 145
77 Transformation of the cubic standard triangle Ω to a general triangle E 154
78 The 10 basis functions for third order triangular elements 156
79 The interpolation from four nodes to three Gauss points on an interval $\left[-\frac{h}{2},+\frac{h}{2}\right]$ 162
80 The mesh and the solution of an elliptic problem with variable coefficients 201
81 Traveling waves on a rectangle 203
82 The radial Bessel function as solution of a BVP 204
83 Difference to the exact solution of a BVP 204
84 Difference to the exact solution of a BVP, using quadratic elements and interpolation to a finer grid. 205
85 Difference of $\frac{\partial u}{\partial x}$ to the exact solution, using second order elements 205
86 Difference of $\frac{\partial u}{\partial x}$ to the exact solution, using first order elements 206
87 A solution with singular partial derivatives at the origin 207
88 A solution with singular partial derivatives, graphs of $\frac{\partial u}{\partial x}$ and $\|\nabla u\|$ 208
89 Fluid flow between two plates, the setup 208
90 Velocity field of an ideal fluid 209
91 Velocity field of a ideal fluid in a circular pipe 211
92 The wing profile and the mesh with the rotated wing 213
93 The surface for v^{2} and the pressure along wing 214
94 The contour plot for the pressure 215
95 The flow lines around the wing 216
96 A minimal surface 216
97 The capacitance and the section used for the modeling 218
98 A mesh on the domain 219
99 The contour lines of the resulting voltage 219
100 Voltage plot and electric field between the plates of the capacitance 219
101 Torsion of a shaft 221
102 The von Mises stress caused by torsion of a bar with square or rectangular cross section 223
103 The mesh for a dynamic heat problem 225
104 The evolution of the temperature surface at different times 225
105 The temperature surface at different times along $y=0$ 225
106 The temperature as function of time at the endpoint $(2.5,0)$ 226
107 The mesh for a dynamic heat problem 227
108 The evolution of the temperature surface at different times 227
109 The temperature surface at different times along $y=0$ 228
110 The temperature as function of time at the endpoint $(2.5,0)$ 228
111 The domain and the initial temperature 230
112 The temperature at different times 230
113 The temperature at different times along $y=0$ 231
114 The temperature decay at the center $(0,0)$ 232
115 The domain for a heat wave propagation 233
116 The propagation of a heat wave 233
117 The steady state solution of a heat problem in a ball 236
118 The errors of the steady state solution of a heat problem in a ball 236
119 The steady statesolution of a heat problem in a ball, solved as 1D problem 237
120 The temperatur $u(r, t)$ inside the cylinder 238
121 The contours of the temperatur $u(r, t)$ inside the cylinder 238
122 The temperatur $u(r, t)$ at the inner $(r=0)$ and outer $(r=R)$ edge 239
123 The domain for the wave propagation 239
124 Wave propagation, leading to a Kirchhoff diffraction pattern 240
125 A spherical sound wave at time $t=1.75$, and the decaying amplitude with the best fitting $\frac{c}{t}$ 242
126 A circular sound wave at time $t=4$ and the decaying amplitude with the best fitting $\frac{c}{\sqrt{t}}$. 243
127 A spherical wave as function of time t and radius $r=\sqrt{x^{2}+y^{2}+z^{2}}$ 244
128 A cylindrical wave as function of time t and radius $r=\sqrt{x^{2}+y^{2}}$ 245
129 The amplitude $u(x, t)$ for a reflected pulse 246
130 Waterfall plot and contour plot for the amplitude $u(x, t)$ for a reflected pulse 247
131 The value V of a European call option as function of time τ and the value of the stock S 248
132 The value V of a European put option as function of time τ and the value of the stock S 250
133 The first six eigenfunctions of the harmonic Schrödinger operator 252
134 The conductivity 252
135 Contours of the voltages 253
136 The vector field for the current density \vec{J} and a few streamlines 254
137 Voltage along the boundary 255
138 Differences of the voltage and the reference voltage 255
139 Flux density at inlet and outlet 257
140 Displacement and strain for a beam with thinner midsection 258
141 Fata Morgana: the ray of light for a point on the ground 259
142 Fata Morgana: how the image of two points appear to the observer 260
143 Keller's boundary value problem 261
144 Two solutions of $-u^{\prime \prime}(x)=\frac{1}{2} \exp (u(x))$ with $u(-1)=u(+1)=0$ 263
145 A BVP with multiple nonlinear contributions 264
146 The solution of Fisher's equation 266
147 A dynamic solution of Fisher's equation 268
148 A dynamic solution of Fisher's equation for the radially symmetric setup 268
149 The connections between Salt Lake City and Zürich 271
150 The solutions for a bending beam 274
151 Time evolution and the final solution for a dynamic bending beam 276
152 A BVP describing mass transfer in a porous catalyst 277
153 A BVP describing mass transfer in a porous catalyst, second setup 278
154 Motion of a string, excited by an initial pulse close to $x=0$ 280
155 The original and deformed Mesh for a plane stress example 280
156 The displacements for a plane stress example 281
157 The stresses for a plane stress example 282
158 The von Mises stress and the energy density for a plane stress example 282
159 The normal strain in the 45° direction for a plane stress example 283
160 One quarter of a section through the pipe 284
161 Von Mises stress and principal stresses 286
162 Domain for the crook with attached weight 292
163 A horizontal slice with σ_{y} shown and a vertical slice with σ_{x} shown 294
164 The von Mises stress on the crook, as surface and level curves 294
165 Bending of vertical beam and von Mises Stress at corner 295
166 The deformed wrench and the stress σ_{y} along upper edge with the applied load 296
167 Surface and contour plot of the von Mises stress in [MPa] 297
168 The upper half of the original and deformed domain for the rotating rubber box 298
169 The displacements u_{r} and u_{z} for the rotating rubber box 298
170 The von Mises stress for the rotating rubber box 299
171 The original and deformed domain of the washer 299
172 The radial displacement u_{r} 300
173 The height displacement u_{z} 301
174 The normal stress σ_{z} 302
175 The normal pressures σ_{z} along upper and lower edge and at half height 302
176 The normal stresses and the von Mises stress in a water dam 305
177 Three eigenmodes of a tuning fork 307
178 The first twelve eigen modes of a vibration ring 309
179 Radial and angular displacement for mode 7 311
180 The mesh for the cylinder contact problem 312
181 Vertical displacement and normal stress at different levels 313
182 Contact with cylinder: contours for the displacements u_{2} and u_{1} and $\sqrt{u_{1}^{2}+u_{2}^{2}}$ 316
183 Contact with cylinder: contours for the two normal stresses and the von Mises stress 316
184 Contact with cylinder: results of pressure and contact width for small penetration depth 318
185 Contact with cylinder: results of pressure and contact width for large penetration depth 319
186 Contact with sphere: results of pressure and contact width for large penetration depth 321
187 Contact with sphere: contours for the displacements u_{z} and u_{r} and $\sqrt{u_{r}^{2}+u_{z}^{2}}$ 321
188 Contact with sphere: contours for the two normal stresses and the von Mises stress 322
189 Contact with a sphere for given normal pressure $\sigma_{z}(r, 0)$ 322
190 The von Mises stress for a contact with a sphere for given normal pressure $\sigma_{z}(r, 0)$ 323
191 The horizontal displacement u_{1} of an elastic cylindrical wave 326
192 The vertical displacement u_{2} of an elastic cylindrical wave 327
193 The horizontal displacement u_{1} of an elastic cylindrical wave 329
194 The vertical displacement u_{2} of an elastic cylindrical wave 330
195 The domain for an elastic wave moving on a curve 331
196 An elastic wave moving through a turn 333
List of Tables
1 Commands to solve BVPs, IBVPs and elasticity problems 11
2 Normal and shear strains in space 14
3 Description of normal and tangential stress in space 14
4 Commands to create and modify meshes 47
5 Elements of a mesh structure 48
$6 \quad$ Codes for the boundary conditions 49
7 Commands to solve and examine 1D boundary value problems 68
8 Commands to solve and examine plane elasticity problems 81
9 Commands to solve and examine axially symmetric elasticity problems 86
10 Results for elements of order 1, 2 and 3 108
11 Elastic energy contributions for shearing 119
12 Different values for the deformation of a bending beam, depending on the size of the grid 124
13 Properties of triangular elements 135
14 Coordinates of the nodes in the standard quadratic triangle 144
15 Coordinates of the nodes in the standard cubic triangle 154
16 Properties of the ODE solvers used in IBVP1D () 177
17 Variables for the Black-Scholes PDE 248
18 Comparison of different elements for the washer fastener example 304
19 Parameters for the contact of a cylinder with a half space 312
20 Adaptations for pressing with a cylinder or a sphere 320

Index

AxiStress(), 45, 85, 288, 290, 297, 300, 320, 322, 324
AxiStressEquationCubicM(), 91
AxiStressEquationM(), 91, 131
AxiStressEquationQuadM(), 91
axisymmetric, 18
basis function, 144, 154
Bernoulli principle, 16, 18, 20, 183
Bernoulli's law, 213
Black-Scholes, 247
boundary condition, 174
BVP, 21
boundary value problem, 9
eigenvalue, 10
elliptic, 9
symmetric, 10
BVP1D(), 31, 68, 69, 108-111, 237, 258, 260, 261, 270, 273
BVP1Deig(), 26, 74, 251
BVP1DNL(), 35-37, 75, 259, 261-264, 266, 272, 274-279
BVP2D(), 23, 24, 64, 127, 233
BVP2Deig(), 24, 25, 65, 232
BVP2Dsym(), 21-23, 63, 201, 213, 235, 254
Cholesky, 166
conforming, 61, 103, 108, 110, 134, 135
constant strain triangle, 117, 186
convection, 24
convergence, 93
Crank-Nicolson, 71, 113, 166, 177-179
CreateMeshRect(), 21, 22, 24, 27, 40, 43, 49, 56, 60, 98, 119, 122, 127, 202, 203, 241, 243, 284, 285, 292, 322, 324, 325, 328, 331
CreateMeshTriangle(), 23, 25, 28, 38, 50, 52, 58, 61, 94, 95, 98, 103, 127, 201, 203, 206, 208, 211, 213, 217, 223, 224, 227, 229, 233, 240, 281, 290, 291, 295, 300, 308, 310, 313, 322, 324
CST, 117, 186
Delaunay, 57
Delaunay2Mesh(), 57
DIRK, 178
eigenvalue, 24, 90, 167, 168
eigs, 90
EIT, 252
element stiffness matrix, 138
EvaluateEnergyDensity(), 85, 122, 282
EvaluateEnergyDensityAxi(), 88, 290, 303
EvaluatePrincipalStress(), 39, 42, 84, 286
EvaluatePrincipalStressAxi(), 87, 288
EvaluateStrain(), 38, 41, 82, 120
EvaluateStrainAxi(), 86, 288, 290
EvaluateStress(), 39, 42, 82, 127, 281, 285, 293, 296, 304, 308, 314
EvaluateStressAxi(), 45, 87, 288, 298, 320, 322, 324

EvaluateTresca(), 39, 42, 84
EvaluateTrescaAxi(), 88, 288
EvaluateVonMises(), 39, 42, 83, 282, 285, 294, 296, 304, 314
EvaluateVonMisesAxi(), 45, 87, 288, 298, 320, 322, 324
explicit, 72, 113, 166, 168, 177, 178
Fata Morgana, 258
FEM1DEvaluateDu(), 68, 70, 108-110, 176, 259, 261, 263, 270
FEM1DGaussPoints(), 68, 70, 261, 270, 273
FEMEquation(), 88, 95
FEMEquationCubic(), 89
FEMEquationQuad(), 89
FEMEvaluateGP(), 59, 121, 303
FEMEvaluateGradient(), 59, 207
FEMgriddata(), 53, 61, 117, 119, 204, 214, 215, 233, 235, 254, 257, 283, 286, 287, 292-294, 296, 314, 315, 324
FEMIntegrate(), 60, 120, 121, 201, 282, 290, 303
FEMInterpolBoundaryWeight(), 90
FEMInterpolWeight(), 89
FEMtricontour(), 23, 24, 27, 57, 58, 208, 211, 214, 220, 254, 283, 294, 297, 298, 325, 328
FEMtrimesh(), 21-23, 25, 27, 28, 38, 57, 58, 103, 127, 201, 202, 206-208, 211, 214, 220, 233, 240, 254, 281, 297, 298, 304, 308, 322, 324, 325, 328, 331
FEMtrisurf(), 58, 217, 223, 281, 294
Fermat's principle, 259
Fisher's equation, 265
Galerkin method, 134
Gauss integration, 60, 136-138, 143, 145, 152, 155, 163, 171, 172, 188, 190
GenerateFEM1D(), 68, 69
GenerateWeight1D(), 68
heat equation, $10,24,27,165,167$
Hooke's law, 15
I2BVP1D(), 34, 68, 73, 244-246, 279
I2BVP2D(), 28, 67, 202, 240, 241, 243
IBVP, 21
hyperbolic, 11, 67, 167
parabolic, 10, 66, 165
IBVP1D(), 32, 68, 71, 72, 113, 237, 248, 249
IBVP1DNL(), 37, 76, 267, 268, 275
IBVP2D(), 27, 66, 166, 224, 227, 233
IBVP2Dsym(), 66, 166, 229, 233
implicit, 72, 113, 166, 177, 178
interpolation, 171
Jaccobi determinant, 136
mesh, refine, 57

MeshAddConstraint(), 55, 127
MeshCubic2Linear(), 55, 56
MeshDeform(), 40, 57, 201, 284, 285, 331
MeshQuad2Linear(), 24, 55, 56, 203
MeshUpgrade(), 24, 38, 40, 43, 50, 51, 55, 127, 201, 203, 213, 235, 240, 254, 281, 285, 291, 295, 308, 310, 313, 322, 324
minimal surface, 216
PlaneStrain(), 40, 78, 285, 304, 311, 314
PlaneStrainDynamic(), 79
PlaneStrainEig(), 79, 308
PlaneStress(), 38, 53, 78, 281, 291, 292, 295
PlaneStressDynamic(), 43, 79, 325, 328, 331
PlaneStressEig(), 43, 79, 125, 127, 131, 306, 308, 310
potential flow, 207, 210, 213
Prandtl stress function, 222
principal stress, 39, 42, 83
PStressEquationCubicM(), 91
PStressEquationM(), 91, 130
PStressEquationQuadM(), 91
PStressEquationWM(), 185
pwquadinterp(), 32, 68, 70, 108-111, 176, 237, 258, 261, 270, 273, 277-279

ReadMeshTriangle(), 50, 51, 55
Ritz method, 134
Runge-Kutta, 72, 113, 166, 178
Schrödinger equation, 250
shear-locking, 116, 119, 122, 125, 291, 308
ShowDeformation(), 40, 58, 81, 122, 285, 297, 300, 308, 310
singular problem, 206
smallEig(), 90
solution
classical, 132, 133
weak, 133, 134
stability
A-stability, 177
conditional, 72, 113, 177
L-stability, 71, 72, 113, 177
unconditional, 71, 72, 113, 177
stiffness matrix
element, 134
global, 134
strain, 13
streamline(), 215, 254
stress
principal, 39, 42, 83, 288
Tresca, 39, 42, 84, 288
von Mises, 39, 42, 83, 222, 282, 285, 288, 294, 296, 298
successive substitution, 260, 270
superconvergence, 93, 111, 203, 237
tensor
infinitesimal strain, 13
time step
Crank-Nicolson, 166, 178
explicit, 178
implicit, 178
Runge-Kutta, 178
torsional rigidity, 221
Tresca stress, 39, 42, 84, 288
triangle, 7, 50, 51, 92, 218
tricontour(), 58, 92
tuning fork, 306
water dam, 304
wave equation, $28,165,167,168$

[^0]: ${ }^{1}$ One can verify that for homogeneous, isotropic materials a linear law must have this form, e.g. [Sege77]
 ${ }^{2}$ The missing factors of 2 are due to the different definition of the shear strains.

[^1]: ${ }^{3}$ We quietly dropped the constant thickness H from all expressions.
 ${ }^{4}$ This author is convinced that it is easier and more efficient to work with the energy to be minimized and not the system of partial differential equations.

[^2]: ${ }^{5}$ For functions $f(x, y, z)=F(r, \varphi, z)$ (i.e. the identical function written in Cartesian and polar coordinates) use the computational rule (chain rule) to conclude

 $$
 \frac{\partial f}{\partial x}=\cos \varphi \frac{\partial F}{\partial r}-\frac{\sin \varphi}{r} \frac{\partial F}{\partial \varphi} \quad \text { and } \quad \frac{\partial f}{\partial y}=\sin \varphi \frac{\partial F}{\partial r}+\frac{\cos \varphi}{r} \frac{\partial F}{\partial \varphi}
 $$

[^3]: ${ }^{6}$ The function fsolve () is used to determine the zeros. To find approximate values use a plot of the function besselj $(0, x)$.

[^4]: ${ }^{7}$ The Euler-Lagrange equation implies that $u^{\prime}(x)=\beta$ is a constant. Then the equation $\frac{\beta}{\sqrt{1+\beta^{2}}}=\alpha$ has to be solved, leading to $\beta=\frac{\alpha}{\sqrt{1-\alpha^{2}}}$. The monotonous increasing function $f(z)=\frac{z}{\sqrt{1+z^{2}}}$ with the limits $\lim _{z \rightarrow \pm \infty} f(z)= \pm 1$ shows that the BVP has a solution for $-1<\alpha<+1$.

[^5]: ${ }^{8}$ The coefficient $z_{0} \approx 1.8751$ is the first zero of the function $f(z)=1-\cos (z) \cosh (z)$ and $I=\frac{1}{12} W H^{3}$ is the second moment of the cross section.

[^6]: ${ }^{10}$ For scalar problems the functions on the boundary are actually called for one point at a time, but this might change. For elasticity problems the functions are called with multiple points. Thus it is advisable to write all functions vectorized.
 ${ }^{11}$ In the script files (FEMEquation.m and similar) the function is called with the node types as second argument, to be used for different sections in the domain. If you only use the compiled versions (FEMEquation. oct and similar) the dummy argument is not required. I might remove this "feature" in a next release.

[^7]: ${ }^{12}$ This is different from the way to define functions for the 2D codes in FEMoctave.

[^8]: ${ }^{13} \mathrm{I}$ am not aware of an exact formula.

[^9]: ${ }^{14}$ E.g. use [Stah08, §5] with $\nu=0$ and $u_{1}=x y$ and $u_{2}=-\frac{x^{2}}{2}$ to arrive at

 $$
 0 \stackrel{?}{=} \frac{\partial^{2} u_{1}}{\partial x^{2}}+\frac{\partial^{2} u_{1}}{\partial y^{2}}+\frac{\partial}{\partial x}\left(\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}\right)=+0+0+\frac{\partial}{\partial x}(y+0) \quad \text { OK }
 $$

 $$
 0 \stackrel{?}{=} \frac{\partial^{2} u_{2}}{\partial x^{2}}+\frac{\partial^{2} u_{2}}{\partial y^{2}}+\frac{\partial}{\partial y}\left(\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}\right)=-1+0+\frac{\partial}{\partial y}(y+0) \quad \text { OK }
 $$

[^10]: ${ }^{15}$ Add a tiny contribution of 10^{-10} to one of the bounadry forces and observe the results.

[^11]: ${ }^{16}$ The operation $\mathbf{A}=\left(\mathbf{A}+\mathbf{A}^{\prime}\right) / 2$ assures that the matrix is symmetric, to get around a problem in the implementation of eigs () in Octave.

[^12]: ${ }^{17}$ One might be temped to add the center of the triangle as a fourth point, but the resulting weight will be negative. This would lead to stiffness matrices that are not positive definite.

[^13]: ${ }^{18}$ The exact values are $\lambda_{1}=(12-2 \sqrt{15}) / 21, \lambda_{2}=(12+2 \sqrt{15}) / 21, w_{1}=(155-\sqrt{15}) / 2400, w_{4}=(155+\sqrt{15}) / 2400$ and $w_{7}=9 / 80$.

[^14]: ${ }^{19}$ It is quietly assumed that the third component of \vec{n} is positive. Since only the square of the gradient is used the influence of this ignorance will disappear. Generate meshes with triangles with a positive orientation also allow to assure $n_{3}>0$.

[^15]: ${ }^{21}$ To derive the 3 point Gauss integration scheme use

 $$
 \begin{aligned}
 \int_{-1}^{+1} f(t) d t & =w_{1} f(-\xi)+w_{0} f(0)+w_{1} f(+\xi) \\
 \int_{-1}^{+1} 1 d t=2 & =w_{1} 1+w_{0} 1+w_{1} 1 \\
 \int_{-1}^{+1} t d t=0 & =-w_{1} \xi+w_{0} 0+w_{1} \xi=0 \\
 \int_{-1}^{+1} t^{2} d t=\frac{2}{3} & =+w_{1} \xi^{2}+w_{1} \xi^{2} \\
 \int_{-1}^{+1} t^{3} d t=0 & =-w_{1} \xi^{3}+w_{1} \xi^{3}=0 \\
 \int_{-1}^{+1} t^{4} d t=\frac{2}{5} & =+w_{1} \xi^{4}+w_{1} \xi^{4} \\
 \int_{-1}^{+1} t^{5} d t=0 & =-w_{1} \xi^{5}+w_{1} \xi^{5}=0
 \end{aligned}
 $$

[^16]: ${ }^{23}$ Use that the level curves of the functions ξ, ν and $1-(\xi+\nu)$ at the levels $0, \frac{1}{3}, \frac{2}{3}$ and 1 are straight lines through the nodes. For each node use these functions to write down a polynomial vanishing at all other nodes, then choose the leading factor such that at the node the value equals 1 .

[^17]: ${ }^{24}$ This is a standard choice and unconditionally stable, see e.g. [Stah08, §4].

[^18]: ${ }^{25}$ I have a proof in WaveStability.tex.

[^19]: ${ }^{28}$ For an ODE $\dot{u}(t)=-\lambda u(t)$ with exact solution $u(t)=c \exp (-\lambda t)$ applying one time step is implemented by multiplying with a factor $g(\lambda \Delta t)=g(z)$. The function $g(z)$ depends on the algorithm.

 - explicit: $\frac{u_{i+1}-u_{i}}{\Delta t}=-\lambda u_{i}$, thus $u_{i+i}=(1-\lambda \Delta t) u_{i}$ and $g(z)=1-z$. The stability condition $|g(z)|<1$ leads to $z=\lambda \Delta t<2$ or $\Delta t<{\frac{2}{\lambda_{\text {max }}}}$.
 - implicit: $\frac{u_{i+1}-u_{i}}{\Delta t}=-\lambda u_{i+1}$, thus $u_{i+i}=\frac{1}{1+\lambda \Delta t} u_{i}$ and $g(z)=\frac{1}{1+z}$.
 - Crank-Nicolson: $\frac{u_{i+1}-u_{i}}{\Delta t}=-\lambda \frac{u_{i+1}+u_{i}}{2}$, thus $u_{i+i}=\frac{2-\lambda \Delta t}{2+\lambda \Delta t} u_{i}$ and $g(z)=\frac{2-z}{2+z}$.

[^20]: ${ }^{29}$ The algorithm could also be implemented for functions $f\left(x, t, u, u^{\prime}\right)$ depending on the derivative u^{\prime}. Since I did not find good examples this is not done (yet).

[^21]: ${ }^{30}$ Observe that $v(x, t)$ is not the velocity, sorry for the inconvenient notation, but it is consistent with other parts of these notes.

[^22]: ${ }^{31}$ We quietly dropped the constant thickness H from all expressions.

[^23]: ${ }^{32}$ This restriction can be removed.

[^24]: ${ }^{33}$ The command IBVP1D () will solve this problem.
 ${ }^{34}$ The ODE $\frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)=0$ implies $r^{2} \frac{\partial u}{\partial r}=c_{1}$, i.e. $\frac{\partial}{\partial r} u=\frac{c_{1}}{r^{2}}$. An integration leads to the general solution of the ODE $u(r)=c_{2}-\frac{c_{1}}{r}$. Then use the two boundary conditions to determine $c_{1}=c_{2}=\frac{R}{R-1}$ and $u(r)=\frac{R}{R-1} \frac{r-1}{r}$.

[^25]: ${ }^{35}$ Source: Wikipedia en.wikipedia.org/wiki/Schroedinger_equation

[^26]: ${ }^{37}$ Examine the initial value problem $u^{\prime \prime}(x)=-\frac{1}{2} \exp (u(x))$ with $u^{\prime}(0)=0$ and $u(0)=u_{0}$. Examine the value $u(1)$ as function of u_{0} and use a graph or fsolve () to find two zeros at $u_{0} \approx 0.32895$ and $u_{0} \approx 2.8955$.

[^27]: ${ }^{38}$ Conservation of energy can be used directly to determine the maximal angle as function of the initial velocity. The travel time T is then given by a singular integral.

 $$
 \begin{aligned}
 \frac{1}{2} v^{2} & =\left(1-\cos \left(u_{\max }\right)\right)-(1-\cos (u))=\cos (u)-\cos \left(u_{\max }\right) \\
 \frac{d u}{d t}=v(u) & =\sqrt{2\left(\cos (u)-\cos \left(u_{\max }\right)\right)} \\
 T & =\int_{0}^{u_{\max }} \frac{1}{v(u)} d u=\int_{0}^{u_{\max }} \frac{1}{\sqrt{2\left(\cos (u)-\cos \left(u_{\max }\right)\right.}} d u
 \end{aligned}
 $$

[^28]: ${ }^{39}$ For $c=\frac{6}{\sqrt{5}}$ an exact solution is given by $u(x)=\left(1+\exp \left(\frac{-x}{\sqrt{6}}\right)\right)^{-2}$. This was also useful to find the good value for $u_{p}(+M)$.

[^29]: ${ }^{40}$ For symmetric, positive definite matrices one can verify that for solutions of $\mathbf{W} \frac{d}{d t} \vec{u}(t)=-\mathbf{A} \vec{u}(t)+\mathbf{M} \cos (\vec{u}(t))$ the expression $G(\vec{u}(t)):=$ $\frac{1}{2}\langle\mathbf{A} \vec{u}(t), \vec{u}(t)\rangle-\sum_{i}(\mathbf{M} \sin (\vec{u}(t)))_{i}$ is decreasing. If it converges to a steady state \vec{u}_{∞} then $\mathbf{A} \vec{u}_{\infty}=\mathbf{M} \cos \left(\vec{u}_{\infty}\right)$.

[^30]: ${ }^{41}$ Strain is a tensor of order two and thus for a rotation angle $\phi=\frac{\pi}{4}=45^{\circ}$ obtain

 $$
 \left[\begin{array}{ll}
 \varepsilon_{x^{\prime} x^{\prime}}^{\prime} & \varepsilon_{x^{\prime} y^{\prime}}^{\prime} \\
 \varepsilon_{x^{\prime} y^{\prime}}^{\prime} & \varepsilon_{y^{\prime} y^{\prime}}^{\prime}
 \end{array}\right]=\left[\begin{array}{cc}
 \cos \phi & \sin \phi \\
 -\sin \phi & \cos \phi
 \end{array}\right] \cdot\left[\begin{array}{lc}
 \varepsilon_{x x} & \varepsilon_{x y} \\
 \varepsilon_{x y} & \varepsilon_{y y}
 \end{array}\right] \cdot\left[\begin{array}{cc}
 \cos \phi & -\sin \phi \\
 \sin \phi & \cos \phi
 \end{array}\right]
 $$

 $$
 =\left[\begin{array}{cc}
 \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
 \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
 \end{array}\right] \cdot\left[\begin{array}{ll}
 \varepsilon_{x x} & \varepsilon_{x y} \\
 \varepsilon_{x y} & \varepsilon_{y y}
 \end{array}\right] \cdot\left[\begin{array}{cc}
 \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
 \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
 \end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
 1 & 1 \\
 -1 & 1
 \end{array}\right] \cdot\left[\begin{array}{cc}
 \varepsilon_{x x}+\varepsilon_{x y} & -\varepsilon_{x x}+\varepsilon_{x y} \\
 \varepsilon_{x y}+\varepsilon_{y y} & -\varepsilon_{x y}+\varepsilon_{y y}
 \end{array}\right]
 $$

 $$
 \varepsilon_{45}=\varepsilon_{x^{\prime} x^{\prime}}^{\prime}=\frac{1}{2}\left(\varepsilon_{x x}+2 \varepsilon_{x y}+\varepsilon_{y y}\right)
 $$

[^31]: ${ }^{42}$ A computation with Comsol Multiphysics lead to a force of 2395.5 N at half height and an elastic energy of 0.12077 J . The shape of the graphs in Figure 175 is confirmed.

[^32]: ${ }^{43}$ The newer function EvaluateEnergyDensityAxi () simplifies the code significantly.

[^33]: ${ }^{44}$ For this reason one can not use the results for transversal displacements of a straight slender beam with periodic boundary conditions to determine the frequencies and modes of the vibration ring. Find results on the ring in [Blev79, p. 205] and the derivation in [Soed04].

