16bit Simulation with GNU Octave

Andeas Stahe

16bit Simulation with GNU Octave

Andreas Stahel Bern University of Applied Sciences

OctConf 2017, March 20-22, 2017, CERN, Geneva

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Personal I

16bit Simulation with GNU *Octave*

Andeas Stahel

Bern University of Applied Sciences

Andreas Stahel Mathematics

- Teaching:
 - Math at Bachelor level to mechanical and electrical engineers
 - Numerical Methods for the Master Program of Biomedical Engineering
 - A class on how to use Octave to solve engineering problems
- As member of the Institute for Human Centered Engineering (HuCE): many industry projects in mathematical modeling
- Web: https://web.ti.bfh.ch/sha1/
- E-mail: Andreas.Stahel@bfh.ch

Personal II

16bit Simulation with GNU Octave

Andeas Stahel

Concerning Octave:

- Octave is used regularly for teaching, project work and research.
- I teach a class on how to use Octave for engineering problems.
- I started using Octave in 1993/94 and am addicted to it since.
- Octave replaces MATLAB for many reasons: open source, great community support, platform independent, (legally) free.
- My professional life would be different without Octave!

Thank you guys

Why computing on a μ C?

16bit Simulation with GNU Octave

Andeas Stahel

- Some μC are very affordable and thus used in many devices, not visible by the user.
- Functions can useful to calibrate sensors, or one might do a first step of the data treatment on the μC based sensor.
- Developing on a true μC can be tedious. Using a desktop and the power of Octave is convenient.

Facts for Computing on $\mu C I$

16bit Simulation with GNU Octave

Andeas Stahel

- On most affordable μ C only integer arithmetic is implemented in hardware, i.e. no FPU.
- Floating point libraries are large, slow and the results are often overly accurate.
- If you use a 12bit AD converter, there is no need for a 32bit accuracy of the subsequent calculations.
- Since +, and * are available one can aim to implement polynomial functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Facts for Computing on $\mu {\rm C~II}$

16bit Simulation with GNU Octave

Andeas Stahel

Different approaches are possible to implement the evaluation of a given function. It is often a compromise between the amount or required storage and the computations needed.

more storage	\longleftrightarrow	less storage	
fewer computations	\longleftrightarrow	more computations	
look up table	piecewise interpolation	one global	
	linear quadratic	polynomial	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Facts for Computing on μ C III

16bit Simulation with GNU Octave

Andeas Stahe

• On a typical 16bit μ C the arithmetic operations for integers are implemented in harware.

16bit	\pm	16bit	\rightarrow	16bit
16bit	*	16bit	\rightarrow	32bit

- Division by 2¹⁶ is free (high double byte), division by 2^k is cheap (shift).
- Use full the ranges available for the data types int16 or int32 to obtain optimal accuracy.
- For multiplications we aim to use the full range of 32bit results, but will only use the high double byte for further computations.

(日)

Approximation by Polynomials

16bit Simulation with GNU *Octave*

Andeas Stahel

To approximate a given function on a bounded interval by a polynomial, different mathematical tools might be useful:

- Linear regression, i.e. least square approximation
- Chebyshev approximation
- Optimization by using fminsearch(), based on maximum norm, or L₂-norm, or ...
- A combination of the above.

For the problem at hand I worked with Chebyshev approximations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Chebyshev Approximation I

16bit Simulation with GNU *Octave*

Andeas Stahel

The Chebyshev polynomials on the interval $\left[-1\,,\,+1\right]$ are given by

$$T_n(x) = \cos(n \arccos(x))$$

$$T_0(x) = \cos(0) = 1$$

$$T_1(x) = \cos(\arccos(x)) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^2 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

A recursive identity allows to determine the polynomials efficiently.

$$T_{n+1}(x) = 2x \cdot T_n(x) - T_{n-1}(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Chebyshev Approximation II

16bit Simulation with GNU Octave

Andeas Stahel

A function defined on [-1, +1] is approximated by a polynomial $p_N(x)$ of degree N.

$$c_n = \frac{2}{\pi} \int_{-1}^{1} f(x) T_n(x) \frac{1}{\sqrt{1-x^2}} dx$$

$$f(x) \approx p_N(x) = \frac{c_0}{2} + \sum_{n=1}^{N} c_n T_n(x)$$

This is easily implemented in Octave.

If a function g(z) is defined on [a, b] then move it to the standard interval [-1, +1] by $f(x) = g(a + (x + 1) \cdot \frac{b-a}{2})$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Approximate $\arctan(x)$ by a Parabola

16bit Simulation with GNU Octave

Andeas Stahel

• The above Chebyshev approximation can be used to approximate the function $f(x) = \arctan((1+x)/2)$ by a parabola.

$$f(x) \approx p_2(x) = -0.0709107 \cdot x^2 + 0.394737 \cdot x + 0.4625339$$

= (-0.0709107 \cdot x + 0.394737) \cdot x + 0.4625339

 The relative error of this approximation p₂(x) can be determined in bits, use log2(), leading to 7.97 ≈ 8 correct bits.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Setup for the 16bit Computation

16bit Simulation with GNU *Octave*

Andeas Stahel

To determine the 16bit values of

 $p_2(x) = (-0.0709107 \cdot x + 0.394737) \cdot x + 0.4625339$

aim for vector y16 and a factor yscale such that

yscale · y16 $\approx p_2(x)$

The goal is to implement this evaluation with a 16bit arithmetic, while keeping the result as accurate as possible and avoiding overflow, i.e. results exceeding $\pm 2^{15}$.

Start with a fine grid of x-values, e.g. x=linspace(-1,1,100000); Since $-1 \le x \le 1$ we multiply x by xscale and convert to int16 with x16 \approx xscale $\cdot x$, such that

 $-\mathsf{MaxVal} \leq \mathsf{x16} \leq +\mathsf{MaxVal} = 2^{15} - 1 = 32767$

With this we use the full accuracy available on a 16bit arithmetic.

Step 1: res1 = $-0.070910677 \cdot x + 0.3947365$ l

16bit Simulation with GNU *Octave*

Andeas Stahel

To perform the first Horner step proceed as follows:

 $\begin{array}{ll} y = -0.070910677 \cdot x + 0.3947365 \\ y16 = -32767 & (use full scale) \\ prod16 = y16 * x16/2^{16} \\ if |prod16 + yscale \cdot 0.395| > 32767 \\ add16 = int16(yscale * 0.3947365) \\ y16 = prod16 + add16 \end{array} \qquad \begin{array}{ll} yscale = \frac{32767}{0.070910677} \\ yscale = \frac{yscale \cdot xscale}{2^{16}} \\ rescale, divide by 2^{k} \\ integer to be added \end{array}$

With the above numbers rescaling by 1/4 is required and leads to $\mathsf{add16}=22800$.

The result y16 satisfies

```
yscale \cdot y16 \approx -0.070910677 * x + 0.3947365
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step 1: res1 = $-0.070910677 \cdot x + 0.3947365$ II

16bit Simulation with GNU *Octave*

Andeas Stahel

The result can be visualized, using exact (double precision) and approximate (16bit) computations.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Step 2: $res2 = res1 \cdot x + 0.4625339$ I

16bit Simulation with GNU Octave

Andeas Stahel

To perform the second Horner step proceed as follows:

 $\begin{array}{ll} y = {\rm res1} \cdot x + 0.4625339 \\ {\rm prod16} = y16 * x16/2^{16} \\ {\rm if} \; |{\rm prod16} + y{\rm scale} \cdot 0.4625| > 32767 \\ {\rm add16} = {\rm int16}({\rm yscale} * 0.4625339) \\ {\rm y16} = \; {\rm prod16} + \; {\rm add16} \end{array}$

With the above numbers no rescaling is required, thus add16 = 13357The result y16 satisfies

yscale
$$\cdot y16 \approx p_2(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Step 2: $res2 = res1 \cdot x + 0.4625339$ II

16bit Simulation with GNU Octave

Andeas Stahel

The result can be visualized, exact (double precision) and approximate (16bit) computations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is an approximation of the function $\arctan(\frac{1+x}{2})$.

The Result

16bit Simulation with GNU *Octave*

Andeas Stahel

To examine the quality graph the difference of true function and its 16bit approximation. The accuracy is given by

7.96 bit for difference to the arctan-function 13.6 bit for the difference to the polynomial $p_2(x)$

The error is dominated by the Chebyshev approximation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Resulting C++ Code

16bit Simulation with GNU Octave

Andeas Stahel

```
#include <octave/oct.h>
DEFUN_DLD (atan32, args, nargout, ...
           "atan, with, int16, arithmetic")
// for x = z * 32767 and -1 \le z \le 1 the value of
// y = 28878.761 * arctan((z+1)/2) will be computed
  static int i0 = -32767;
  static int i1 = +22800;
  static int i2 = +13357;
  int x = args(0).int_value(); int r ;
  r = i1 + ((i0 * x) >> 18);
  r = i2+((x*r)>>16);
  return octave_value_list (octave_value(r));
}
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In General I

16bit Simulation with GNU Octave

Andeas Stahel

- The above Horner steps can be implemented in an Octave function. Examine the code HornerStep.m.
- The Chebyshev approximation can be of higher order, leading to more accuracy and more computational effort.
- There is no need for manual intervention. One can pack all of the above in an *Octave* script. Examine the code atan16.m.
- Using the code in atan16.m for a Chebyshev approximation of order 4 leads to smaller errors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In General II

16bit Simulation with GNU Octave

For the approximation by $p_4(x)$ of degree 4 we obtain an accuracy of

12.3 bit for difference to the arctan-function 14.1 bit for the difference to the polynomial $p_4(x)$

The error contributions by the Chebyshev approximation and the 16bit arithmetic are of the same magnitude.

A Fast Division in Hardware

16bit Simulation with GNU Octave

Andeas Stahel

The above technique was used to develop a fast hardware algorithm to divide numbers.

- Title: An Efficient Hardware Implementation for a Reciprocal Unit
- Authors: A. Habegger, A. Stahel, J Götte, M. Jacomet all Bern University of Applied Sciences
- DELTA 2010: 5th IEEE Symposium on Electronics Design, Test & Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What can I give to the community?

16bit Simulation with GNU Octave

Andeas Stahel

All of the above would not be possible without the help of the great *Octave* community.

Thank you guys

It is only fair that I try to contribute too.

- Find the lecture notes, codes and data on my web page web.ti.bfh.ch/~sha1 in the frame Octave, search for the file OctaveAtBFH.pdf. Or use the direct link web.ti.bfh.ch/~sha1/Labs/PWF/Documentation/OctaveAtBFH.pdf
- For a class on statistics I put together a collection of commands in web.ti.bfh.ch/~sha1/StatisticsWithMatlabOctave.pdf .
- On a few occasions I reported bugs or contributed some code to Octave and its packages¹.

¹The help and support you get from the community is amazing and beats any tech support from commercial companies I deal with! $\leftarrow @ \rightarrow \leftarrow \equiv \rightarrow \leftarrow \equiv \rightarrow \equiv = - \circ \circ \circ \circ$

16bit Simulation with GNU Octave

16bit Simulation with GNU Octave

Andeas Stahel

That's all folks

Thank you for your attention

Slides and codes are available at web.ti.bfh.ch/~sha1/Octave/OctConf2017/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00